APPLYING NEWTON’S LAWS

5.1.  IDENTIFY: a=0 for each object. Apply XF), =ma, to each weight and to the pulley.
SET UP: Take +y upward. The pulley has negligible mass. Let 7, be the tension in the rope and let 7

be the tension in the chain.
EXECUTE: (a) The free-body diagram for each weight is the same and is given in Figure 5.1a.
XF, =ma, gives I, =w=25.0N.

(b) The free-body diagram for the pulley is given in Figure 5.1b. T, =27, =50.0 N.
EVALUATE: The tension is the same at all points along the rope.

y ¥

a=10 a=10

w = 250N T,
(a) (b)

Figure 5.1a, b

5.2. IDENTIFY: Apply XF =mi to each weight.
SET UP: Two forces act on each mass: w down and 7'(=w) up.

EXECUTE: Inall cases, each string is supporting a weight w against gravity, and the tension in each string is w.
EVALUATE: The tension is the same in all three cases.
5.3. IDENTIFY: Both objects are at rest and a = 0. Apply Newton’s first law to the appropriate object. The

maximum tension 7., is at the top of the chain and the minimum tension is at the bottom of the chain.

max
SET UP: Let +y be upward. For the maximum tension take the object to be the chain plus the ball. For the

minimum tension take the object to be the ball. For the tension 7 three-fourths of the way up from the bottom
of the chain, take the chain below this point plus the ball to be the object. The free-body diagrams in each of
these three cases are sketched in Figures 5.3a, 5.3b and 5.3c. my_, =75.0 kg +26.0 kg =101.0 kg.

my, =75.0 kg. m is the mass of three-fourths of the chain: m = %(26.0 kg)=19.5 kg.

EXECUTE: (a) From Figure 5.3a, £F), =0 gives T},,,, —m,.g =0 and

Thax = (101.0 kg)(9.80 m/s*) =990 N. From Figure 5.3b, XF), =0 gives Ti;, —m,g =0 and

T = (75.0 kg)(9.80 m/s?) =735 N.

(b) From Figure 5.3¢, £F, =0 gives T'—(m+m,)g =0 and T =(19.5 kg+75.0 kg)(9.80 m/sz) =926 N.

EVALUATE: The tension in the chain increases linearly from the bottom to the top of the chain.
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Figure 5.3a—c
5.4. IDENTIFY: For the maximum tension, the patient is just ready to slide so static friction is at its maximum
and the forces on him add to zero.
SET UP: (a) The free-body diagram for the person is given in Figure 5.4a. F' is magnitude of the traction
force along the spinal column and w = mg is the person’s weight. At maximum static friction, f, = un.
(b) The free-body diagram for the collar where the cables are attached is given in Figure 5.4b. The tension
in each cable has been resolved into its x and y components.
Tcos65° _ v
x f; j ! Tsin65° 4
I Tsin65°
, of Dy
" Tcosb5°
(a) (b)
Figure 5.4
EXECUTE: (a) n=w and F = f, = un =0.75w=0.75(9.80 m/s?)(78.5 kg) =577 N.
(b) 2Tsin65°— F=0so T = ‘F = 0.}75w =0.41w = (0.41)(9.80 m/s?)(78.5 kg) =315 N.
2sin65°  2sin65°
EVALUATE: The two tensions add up to 630 N, which is more than the traction force, because the cables
do not pull directly along the spinal column.
5.5. IDENTIFY: Apply ZF =mi to the frame.
SET UP: Let w be the weight of the frame. Since the two wires make the same angle with the vertical, the
tension is the same in each wire. 7 =0.75w.
EXECUTE: The vertical component of the force due to the tension in each wire must be half of the weight,
and this in turn is the tension multiplied by the cosine of the angle each wire makes with the vertical.
LA 3—Wcos6’ and @ = arccosZ = 48°.
2 4 3
EVALUATE: If 6=0° T =w/2 and T — < as & — 90°. Therefore, there must be an angle where 7' = 3w/4.
5.6. IDENTIFY: Apply Newton’s first law to the wrecking ball. Each cable exerts a force on the ball, directed

along the cable.
SET Up: The force diagram for the wrecking ball is sketched in Figure 5.6.

'.":” cos 40"

T sin 40°
B

mg

Figure 5.6
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EXECUTE: (a) XF, =ma,
T cos40°—mg =0

mg (4090 kg)(9.80 m/s?)
B cos40° - cos40°
(b) XF, =ma,
Tpsin40°-T,=0
T,=Tysin40°=336x10* N
EVALUATE: If the angle 40° is replaced by 0° (cable B is vertical), then T =mg and 7, =0.

=523x10* N

5.7. IDENTIFY: Apply SF =md to the object and to the knot where the cords are joined.
SET UP: Let +y be upward and +x be to the right.
EXECUTE: (a) T =w, T, sin30°+T5sin45° =T~ =w, and T, cos30° —Tp cos45° =0. Since
sin45°=cos45°, adding the last two equations gives 7,(cos30°+sin30°) =w, and so

w c0s30°

T,=——=0.732w. Then, Tz =7,———=0.897w.
1.366 cos45°
(b) Similar to part (a), o =w, —T,c0s60°+Tpsin45°=w, and T,sin60°—Tp cos45°=0.
Adding these two equations, 7, = + =2.73w, and Tz =T, Sin60° _ 3.35w.
(sin 60° — cos 60°) cos45°

EVALUATE: In part (a), T, + T > w since only the vertical components of 7, and T hold the object
against gravity. In part (b), since 7, has a downward component T} is greater than w.
5.8. IDENTIFY: Apply Newton’s first law to the car.
SET Up: Use x and y coordinates that are parallel and perpendicular to the ramp.
EXECUTE: (a) The free-body diagram for the car is given in Figure 5.8. The vertical weight w and the
tension 7 in the cable have each been replaced by their x and y components.
(b) XF, =0 gives Tcos31.0°-wsin25.0°=0 and
7=w3220" _ (1130 ke)(9.80 mys?) S22 _ 5460 N,
cos31.0° cos31.0°
(¢) 2F, =0 gives n+Tsin31.0°-wco0s25.0°=0 and

n=wcos25.0°-Tsin31.0°= (1130 kg)(9.80 m/sz)c0525.0° — (5460 N)sin31.0°=7220 N

EVALUATE: We could also use coordinates that are horizontal and vertical and would obtain the same
values of n and T.

Tsin 31.0° Y

T cos 31.0F

w sin 25.0Y

w cos 25.0°

Figure 5.8
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5.9. IDENTIFY: Since the velocity is constant, apply Newton’s first law to the piano. The push applied by the
man must oppose the component of gravity down the incline.
SET UP: The free-body diagrams for the two cases are shown in Figures 5.9a and b. F is the force applied
by the man. Use the coordinates shown in the figure.
EXECUTE: (a) F, =0 gives F —wsinl1.0°=0 and F =(180 kg)(9.80 m/s2)sin1 1.0°=337 N.
(b) F, =0 gives ncos11.0°~w=0and n= . 2F, =0 gives F —nsin11.0°=0 and
cosl11.0°
(—jsinl 1.0°=wtan11.0°=343 N.
cos11.0°
¥ y
\ n
4 ncos 11.0°
F J e
w sin 1 !.U"T‘__' e ?ﬁ—.: 1l %
l“I
Il
]l F\weoslo”
\
q ;
pushes parallel to incline pushes parallel to floor
(a) (b)
Figure 5.9a, b
5.10.

IDENTIFY: Apply Newton’s first law to the hanging weight and to each knot. The tension force at each
end of a string is the same.

(a) Let the tensions in the three strings be T, T’, and T”, as shown in Figure 5.10a.

Figure 5.10a

SET UP: The free-body diagram for the block is given in Figure 5.10b.

EXECUTE:
ZFy =0
7Y T'—w=0
-3 T"=w=60.0N
Figure 5.10b
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SET UP: The free-body diagram for the lower knot is given in Figure 5.10c.

EXECUTE:
SF, =0
Tsind5°—T"=0

" 600N

=———=—"—"—=849N
sin45°  sin45°

Figure 5.10c

(b) Apply ZF, =0 to the force diagram for the lower knot:

SF, =0

F, =T cos45°=(84.9 N)cos45°=60.0 N

SET UP: The free-body diagram for the upper knot is given in Figure 5.10d.
¥ EXECUTE:

YF, =0

Tcos45°—F =0

F =(84.9 N)cos45°

F=60.0N

Tsin45°F - — =N o
Figure 5.10d
Note that F| = F,.

EVALUATE: Applying ZF), =0 to the upper knot gives T’ ”=Tsin45°=60.0 N = w. If we treat the whole

system as a single object, the force diagram is given in Figure 5.10e.
XF, =0 gives F, = Fj, which checks
XF, =0 gives 7" =w, which checks

Figure 5.10e

5.11. IDENTIFY: We apply Newton’s second law to the rocket and the astronaut in the rocket. A constant force

means we have constant acceleration, so we can use the standard kinematics equations.

SET UP: The free-body diagrams for the rocket (weight w, ) and astronaut (weight w) are given in

Figures 5.11a and 5.11b. F; is the thrust and # is the normal force the rocket exerts on the astronaut. The

speed of sound is 331 m/s. We use XF), = ma,, and v =v,+ at.

¥ ¥

n
5 3
Fy iu
a

Figure 5.11
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5-6 Chapter 5
EXECUTE: (a) Apply XF), = ma, to the rocket: Fr —w, =ma. a=4g and w, = mg, so
F=m(5g)=(2.25%x10°kg) (5) (9.80 m/s?)=1.10x10¥ N.
(b) Apply 2F, = ma, to the astronaut: n — w=ma. a =4g and m = E, son=w+ (KJ(4g) =5w.
g g
(©) =0, v=331m/sanda =4g =39.2 m/s?. v=v,+at givest = vov 331 m/52 =
a 39.2 m/s
EVALUATE: The 8.4 s is probably an unrealistically short time to reach the speed of sound because you
would not want your astronauts at the brink of blackout during a launch.
5.12. IDENTIFY: Apply Newton’s second law to the rocket plus its contents and to the power supply. Both the
rocket and the power supply have the same acceleration.
SET UP: The free-body diagrams for the rocket and for the power supply are given in Figures 5.12a and b.
Since the highest altitude of the rocket is 120 m, it is near to the surface of the earth and there is a
downward gravity force on each object. Let +y be upward, since that is the direction of the acceleration.
The power supply has mass mp = (15.5 N)/(9.80 m/sz) =1.58 kg.
EXECUTE: (a) XF, = ma, applied to the rocket gives F'—m,g =m,a.
_ _ 2
ue F-mg _ 1720 N — (125 kg)(9.80 m/s”) —3.96 m/s>.
m, 125 kg
(b) XF), =ma, applied to the power supply gives n—m,g =mpa.
n=my(g+a)=(1.58 kg)(9.80 m/s* +3.96 m/s*) =21.7 N.
EVALUATE: The acceleration is constant while the thrust is constant and the normal force is constant
while the acceleration is constant. The altitude of 120 m is not used in the calculation.
y y
F [Il “” [ﬂ'
e & x
m.g Y8
(@ (b)
Figure 5.12
5.13. IDENTIFY: Use the kinematic information to find the acceleration of the capsule and the stopping time.

Use Newton’s second law to find the force F that the ground exerted on the capsule during the crash.
SET UP: Let +y be upward. 311 km/h =86.4 m/s. The free-body diagram for the capsule is given in
Figure 5.13.

EXECUTE: y—y,=—0.810m, vy, =-86.4m/s, v, =0. v} =vj,+2a,(y—y,) gives

V-5, 0—(-86.4 m/s)?

a. =
7 2(v-yy)  2(-0.810) m
(b) XF, = ma, applied to the capsule gives F' —mg = ma and

=4610 m/s> =470g.

F=m(g+a)=(210 kg) (9.80 m/s? + 4610 m/s?) =9.70x10> N =471w.

2(y—y) _ 2(-0.810 m)
Voy v, —86.4m/s+0

+v

V
(©) y_J/o:( 0’”2 yjt gives ¢ = =0.0187 s
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EVALUATE: The upward force exerted by the ground is much larger than the weight of the capsule and
stops the capsule in a short amount of time. After the capsule has come to rest, the ground still exerts a

force mg on the capsule, but the large 9.70x10° N force is exerted only for 0.0187 s.

mg

Figure 5.13

5.14. IDENTIFY: Apply Newton’s second law to the three sleds taken together as a composite object and to each
individual sled. All three sleds have the same horizontal acceleration a.
SET UP: The free-body diagram for the three sleds taken as a composite object is given in Figure 5.14a
and for each individual sled in Figure 5.14b—d. Let +x be to the right, in the direction of the acceleration.

My, = 60.0 kg.
EXECUTE: (a) ZF, = ma, for the three sleds as a composite object gives P = m,,a and
=L IBN o8 mis?,
my,  60.0 kg

(b) ZF, = ma, applied to the 10.0 kg sled gives P -7, = m;qa and

T,=P—mya=125N-(10.0 kg)(2.08 m/sz) =104 N. XF, = ma, applied to the 30.0 kg sled gives

Ty = mypa = (30.0 kg)(2.08 m/s?) = 62.4 N.

EVALUATE: If we apply 2F, = ma, to the 20.0 kg sled and calculate a from 7, and Tj found in part (b),

T,—Tg 104N-624N
My 20.0 kg

wegetT, —Tp =mypa. a= =2.08 m/s?, which agrees with the value we

calculated in part (a).

a a a

¥
Mo o
20
Ty P Ty T,
=2 I ——

Mg

m 08
10.0 kg sled 20.0 kg sled 30.0 kg sled

(a) (b) © C)
Figure 5.14

5.15. IDENTIFY: Apply ZF =ma to the load of bricks and to the counterweight. The tension is the same at
each end of the rope. The rope pulls up with the same force (7') on the bricks and on the counterweight.

The counterweight accelerates downward and the bricks accelerate upward; these accelerations have the
same magnitude.
(a) SET Up: The free-body diagrams for the bricks and counterweight are given in Figure 5.15.
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.\I
m g m,g
5
bricks counterweight
Figure 5.15
(b) EXECUTE: Apply XF) =ma, to each object. The acceleration magnitude is the same for the two
objects. For the bricks take +y to be upward since @ for the bricks is upward. For the counterweight
take +y to be downward since @ is downward.
bricks: XF, =ma,
T-mg=ma
counterweight: XF), =ma,
myg —T =mya
Add these two equations to eliminate 7:
(my —my)g = (my +my)a
a=|Mazm |, | 280ke=150Ke g o) 2 -0 06 mys?
my + my 15.0 kg +28.0 kg
(©) T—mg=ma gives T =mj(a+g)=(15.0 kg)(2.96 m/s> +9.80 m/s*) =191 N
As a check, calculate 7 using the other equation.
myg —T =mya gives T =my(g —a)=28.0kg(9.80 m/s* —2.96 m/s?) =191 N, which checks.
EVALUATE: The tension is 1.30 times the weight of the bricks; this causes the bricks to accelerate
upward. The tension is 0.696 times the weight of the counterweight; this causes the counterweight to
accelerate downward. If m; =m,, a=0 and T =m;g =m,g. In this special case the objects don’t move. If
m; =0, a=g and T =0; in this special case the counterweight is in free fall. Our general result is correct
in these two special cases.
5.16. IDENTIFY: In part (a) use the kinematic information and the constant acceleration equations to calculate

the acceleration of the ice. Then apply ZF = md. In part (b) use F = ma to find the acceleration and use
this in the constant acceleration equations to find the final speed.

SET Up: Figures 5.16a and b give the free-body diagrams for the ice both with and without friction.

Let +x be directed down the ramp, so +y is perpendicular to the ramp surface. Let ¢ be the angle

between the ramp and the horizontal. The gravity force has been replaced by its x and y components.
EXECUTE: (a) x—x,=1.50m, vy, =0. v, =2.50 m/s. v)% = vgx +2a,.(x—x,) gives
22 2 2
a,= Yy Vo (2:50m/s) 0 2.08 m/s’. XF, =ma, gives mgsing =ma and sin ¢ _a_208ms m/s2 .
2(x—xg) 2(1.50 m) g 9.80m/s
9=12.3°.
(b) XF, = ma, gives mgsing— f =ma and
Q=8 sing— f (8.00 kg)(9.80 m/s%)sin12.3°~10.0 N
m 8.00 kg

=0.838 m/s>.

Then x—xy=1.50m, v,, =0. a,=0.838 m/s> and vi =v§x +2a,(x—xy) gives

v, =24, (x— x9) =/2(0.838 m/s2)(1.50 m) =1.59 m/s
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EVALUATE: With friction present the speed at the bottom of the ramp is less.

mg sin ¢ mg sin

mg cos ¢ /

me cos ¢

mg'L - me't

Figure 5.16a, b

5.17. IDENTIFY: Apply XF =ma to each block. Each block has the same magnitude of acceleration a.

SET UP: Assume the pulley is to the right of the 4.00 kg block. There is no friction force on the 4.00 kg
block; the only force on it is the tension in the rope. The 4.00 kg block therefore accelerates to the right and
the suspended block accelerates downward. Let +x be to the right for the 4.00 kg block, so for it a, =a,

and let +y be downward for the suspended block, so for it a,, =a.

EXECUTE: (a) The free-body diagrams for each block are given in Figures 5.17a and b.
T 10.0N

— =" =250 m/s’.
4.00kg 4.00 kg

(b) ZF, =ma, applied to the 4.00 kg block gives 7 = (4.00 kg)a and a =

(¢) £F, =ma, applied to the suspended block gives mg —T = ma and
T 10.0N

S g-a  9.80 m/s> —2.50 m/s>
(d) The weight of the hanging block is mg = (1.37 kg)(9.80 m/sz) =13.4 N. This is greater than the tension
in the rope; T =0.75mg.

m

=1.37 kg.

EVALUATE: Since the hanging block accelerates downward, the net force on this block must be
downward and the weight of the hanging block must be greater than the tension in the rope. Note that the
blocks accelerate no matter how small m is. It is not necessary to have m >4.00 kg, and in fact in this

problem m is less than 4.00 kg.

mg

Figure 5.17a, b
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5.18. IDENTIFY: (a) Consider both gliders together as a single object, apply F = md, and solve for a. Use a in
a constant acceleration equation to find the required runway length.
(b) Apply =F =ma to the second glider and solve for the tension 7, ¢ in the towrope that connects the two
gliders.
SET Up: In part (a), set the tension 7, in the towrope between the plane and the first glider equal to its
maximum value, 7, =12,000 N.
EXECUTE: (a) The free-body diagram for both gliders as a single object of mass 2m =1400 kg is given in
. . T.-2f 12,000 N-5000 N
Figure 5.18a. £F, = ma, gives T, —2f =(2m)a and a =~ S 00 20 =5.00 m/s”. Then
’ 2m 1400 kg
2 2_.2 Vi —vh
a, =5.00 m/s”, vy, =0 and v, =40 m/s in v = vy, +2a,(x—x;) gives (x —x;) ="2—0x =160 m.
ax
(b) The free-body diagram for the second glider is given in Figure 5.18b.
XF, =ma, gives T, — f =ma and T = f +ma =2500 N + (700 kg)(5.00 m/sz) =6000 N.
EVALUATE: We can verify that XF, = ma, is also satisfied for the first glider.
y y
Py ) a n“ a
2 T, y 34
= = X 2 - x
' 2mg mg
(@ (b)
Figure 5.18
5.19. IDENTIFY: The maximum tension in the chain is at the top of the chain. Apply ZF = ma to the composite

object of chain and boulder. Use the constant acceleration kinematic equations to relate the acceleration to
the time.
SET UP: Let +y be upward. The free-body diagram for the composite object is given in Figure 5.19.

T =2.50Wehain- Miot = Mehain + Mpoulder = 1325 kg.
EXECUTE: (a) XF, =ma, gives T —my g = my,a.

a= T_mtotg — 2'50mchaing_mtotg — (z'somchain _1\ g

Myt Myt Myt

a= (2500575 ke] —1} (9.80 m/s?) = 0.832 m/s>
1325 kg

(b) Assume the acceleration has its maximum value: a,, = 0.832 m/s?, y— Yo =125 mand v,, =0.

2(y= ) :\/ 20125m) _ .o

a, 0.832 m/s*

Y= Yo =Voyl +%ayt2 gives t =\/

EVALUATE: The tension in the chain is 7 =1.41x10% N and the total weight is 1.30x 10* N. The upward
force exceeds the downward force and the acceleration is upward.
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-

Mo

Figure 5.19

5.20. IDENTIFY: Apply F =ma to the composite object of elevator plus student (m,, =850 kg) and also to
the student (w=>550 N). The elevator and the student have the same acceleration.
SET UP: Let +y be upward. The free-body diagrams for the composite object and for the student are

given in Figures 5.20a and b. T is the tension in the cable and # is the scale reading, the normal force the
scale exerts on the student. The mass of the student is m =w/g =56.1 kg.

EXECUTE: (a) XF, =ma, applied to the student gives n—mg =ma

)
a, = nome _ 450N-550N =—1.78 m/s>. The elevator has a downward acceleration of 1.78 m/s.
m 56.1 kg
670 N — N
o) a, _STON=SSON ) 4y 2,
56.1kg

(¢) n=0 means g, =—-g. The student should worry; the elevator is in free fall.

(d) XF, = ma, applied to the composite object gives T —my g =ma. T =my(a, +g). Inpart (a),

T = (850 kg)(~1.78 m/s” +9.80 m/s*) = 6820 N. In part (c), a, =—g and T =0.

EVALUATE: Inpart (b), 7 =(850 kg)(2.14 m/s> +9.80 m/s?)=10,150 N. The weight of the composite

object is 8330 N. When the acceleration is upward the tension is greater than the weight and when the
acceleration is downward the tension is less than the weight.

.
o

M8

Figure 5.20a, b

5.21. IDENTIFY: While the person is in contact with the ground, he is accelerating upward and experiences two
forces: gravity downward and the upward force of the ground. Once he is in the air, only gravity acts on
him so he accelerates downward. Newton’s second law applies during the jump (and at all other times).
SET Up: Take +y to be upward. After he leaves the ground the person travels upward 60 cm and his
acceleration is g =9.80 m/s?, downward. His weight is w so his mass is w/g. ZF, =ma, and

2

vy = vof, +2a,(y—y,) apply to the jumper.

EXECUTE: (a) v, =0 (at the maximum height), y -y, =0.60 m, a, =-9.80 m/s>.

v =v5, +2a,(y— ) gives vy, =[-2a, (y - yy) = \/—2 (—9.80 m/s>) (0.60 m) =3.4 ms.

(b) The free-body diagram for the person while he is pushing up against the ground is given in Figure 5.21.
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(¢) For the jump, v;, =0, v, =3.4n/s (from part (a)), and y -y, =0.50 m.

vy =V,  (34m/s)>—0

2y-y)  2(0.50m)

vﬁ =v§y+2ay(y—y0) gives a, = =11.6 m/s’. XF, =ma, gives n—w=ma.

n=w+ma= w[l +£j=2.2w.
g

Figure 5.21

EVALUATE: To accelerate the person upward during the jump, the upward force from the ground must
exceed the downward pull of gravity. The ground pushes up on him because he pushes down on the
ground.

dv _
5.22. IDENTIFY: Acceleration and velocity are related by a,, = Tty Apply XF =ma to the rocket.
SETUP: Let +y be upward. The free-body diagram for the rocket is sketched in Figure 5.22. F is the

thrust force.
EXECUTE: (a) v, =At+Bt>. a,=A+2Bt. At t=0, a,=1.50m/s’so 4=1.50 m/s>. Then

v, =2.00 m/s at £=1.00s gives 2.00 m/s=(1.50 m/s*)(1.00 s)+ B(1.00 5)* and B=0.50 m/s’.
(b) At 1=4.00's, a,=1.50 m/s*+2(0.50 m/s’)(4.00 s) =5.50 m/s”.

(¢) XF, = ma, applied to the rocket gives T —mg =ma and

T =m(a+g)=(2540 kg)(9.80 m/s” +5.50 m/s?) =3.89x10* N. T =1.56w.

(d) When a =1.50 m/s>, T =(2540 kg)(9.80 m/s> +1.50 m/s>) =2.87x10* N

EVALUATE: During the time interval when v(¢) = At + Bt? applies the magnitude of the acceleration is

increasing, and the thrust is increasing.

Y mg

Figure 5.22

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



Applying Newton’s Laws 5-13

5.23.

5.24.

5.25.

IDENTIFY: We know the external forces on the box and want to find the distance it moves and its speed.
The force is not constant, so the acceleration will not be constant, so we cannot use the standard constant-
acceleration kinematics formulas. But Newton’s second law will apply.

. . . . F,
SET UpP: First use Newton’s second law to find the acceleration as a function of time: a, () =—=. Then

m

integrate the acceleration to find the velocity as a function of time, and next integrate the velocity to find
the position as a function of time.

: F, _(=6.00 N/s*)¢*
EXECUTE: Let +x be to the right. a, (f)=—*= (Z6.00 N/sT)”
m 2.00 kg

to find the velocity as a function of time: v, (t) = —(1.00 m/s? )t3 +9.00 m/s. Next integrate the velocity to find

=—(3.00 m/ s4)t2. Integrate the acceleration

the position as a function of time: x(¢) =—(0.250 m/s* )t4 +(9.00 m/s)¢z. Now use the given values of time.
(@) v, =0 when (1.00 m/s*)r* =9.00 m/s. This gives #=2.08 s. At 1=2.08s,
x =(9.00 m/s)(2.08 s) — (0.250 m/s*)(2.08 s)* =18.72 m—4.68 m=14.0 m.

(b) At £=3.00s, v (r)=—(1.00 m/s*)(3.00 s)* +9.00 m/s =—18.0 m/s, so the speed is 18.0 m/s.
EVALUATE: The box starts out moving to the right. But because the acceleration is to the left, it reverses
direction and v, is negative in part (b).

IDENTIFY: We know the position of the crate as a function of time, so we can differentiate to find its
acceleration. Then we can apply Newton’s second law to find the upward force.

SETUP: v, (t)=dy/dt, a,(t) =dv/dt, and ZF, = ma,.
EXECUTE: Let +y be upward. dy/dt =v, (1) =2.80 m/s+(1.83 m/s’ )t2 and

dv,/dt=a, (1)=(3.66 m/s3) 1. At 1=4.00s, a,=14.64 m/s>. Newton’s second law in the y direction

gives F —mg =ma. Solving for F gives F =49 N+ (5.00 kg)(14.64 m/sz) =122 N.

EVALUATE: The force is greater than the weight since it is accelerating the crate upwards.

IDENTIFY: At the maximum tilt angle, the patient is just ready to slide down, so static friction is at its
maximum and the forces on the patient balance.

SET UP: Take +x to be down the incline. At the maximum angle f, =un and XF, =ma, =0.

EXECUTE: The free-body diagram for the patient is given in Figure 5.25. £F), = ma, gives n=mgcosé.

YF, =0 gives mgsinf—un=0. mgsinf— yumgcosd=0. tanf =y, so 8 =50

mgsint

Figure 5.25

EVALUATE: A larger angle of tilt would cause more blood to flow to the brain, but it would also cause the
patient to slide down the bed.
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5.26. IDENTIFY: f, <un and f, =y n. The normal force n is determined by applying SF =ma to the block.
Normally, g < . f, is only as large as it needs to be to prevent relative motion between the two

surfaces.

SET UP: Since the table is horizontal, with only the block present » =135 N. With the brick on the block,
n=270 N.

EXECUTE: (a) The friction is static for P =0 to P=75.0 N. The friction is kinetic for P> 75.0 N.

(b) The maximum value of f; is tn. From the graph the maximum f; is f; =75.0 N, so

maxf, 75.0N fi S00N
=—5= =0.556. = 1, n. From the graph, f,, =50.0 N and =X =
s " 35N Jio =y graph, fy Hx n 135N

(¢) When the block is moving the friction is kinetic and has the constant value f, = t4n, independent of P.

=0.370.

This is why the graph is horizontal for P >75.0 N. When the block is at rest, f; = P since this prevents
relative motion. This is why the graph for P <75.0 N has slope +1.
(d) max f; and f, would double. The values of f on the vertical axis would double but the shape of the
graph would be unchanged.
EVALUATE: The coefficients of friction are independent of the normal force.

5.27.  (a) IDENTIFY: Constant speed implies @ =0. Apply Newton’s first law to the box. The friction force is
directed opposite to the motion of the box.
SET Up: Consider the free-body diagram for the box, given in Figure 5.27a. Let F be the horizontal
force applied by the worker. The friction is kinetic friction since the box is sliding along the surface.

y EXECUTE:

ZFy =ma,

n—mg=0
n=mg

SO fy = thyn = thmg

Figure 5.27a

ZE‘C =max
F—f=0
F = f, = itmg = (0.20)(11.2 kg)(9.80 m/s*) =22 N

(b) IDENTIFY: Now the only horizontal force on the box is the kinetic friction force. Apply Newton’s
second law to the box to calculate its acceleration. Once we have the acceleration, we can find the
distance using a constant acceleration equation. The friction force is f = s mg, just as in part (a).

SET UP: The free-body diagram is sketched in Figure 5.27b.

¥ EXECUTE:
XF. =ma,
‘ = —fi =ma,
—Mymg =ma,
/i ¥ a, =— g =—(0.20)(9.80 m/s*) = —1.96 m/s’
Jm;:

Figure 5.27b

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



Applying Newton’s Laws 5-15

5.28.

5.29.

5.30.

Use the constant acceleration equations to find the distance the box travels:
v, =0, vy, =3.50 m/s, a, =—1.96 m/s>, x—x,="2

vy = Vo +2a,(x—x0)

v = Vo, _ 0-(3.50 m/s)’ S im

X=Xy = >
20, 2(-1.96 m/s%)

EVALUATE: The normal force is the component of force exerted by a surface perpendicular to the surface.
Its magnitude is determined by F =md. In this case n and mg are the only vertical forces and a , =0, so

n=mg. Also note that f, and n are proportional in magnitude but perpendicular in direction.

IDENTIFY: Apply SF =md to the box.

SET UP: Since the only vertical forces are n and w, the normal force on the box equals its weight. Static
friction is as large as it needs to be to prevent relative motion between the box and the surface, up to its
maximum possible value of "™ = y.n. If the box is sliding then the friction force is fj = t4n.
EXECUTE: (a) If there is no applied force, no friction force is needed to keep the box at rest.

(b) "™ = un=(0.40)(40.0 N) =16.0 N. If a horizontal force of 6.0 N is applied to the box, then

Js =6.0 N in the opposite direction.

(¢) The monkey must apply a force equal to f;™™, 16.0 N.

(d) Once the box has started moving, a force equal to f; =4 n=8.0 N is required to keep it moving at
constant velocity.

(@) f, =8.0N. a=(18.0 N—8.0 N)/(40.0 N/9.80 m/s*) = 2.45 m/s’

EVALUATE: 44 <y and less force must be applied to the box to maintain its motion than to start it
moving.

IDENTIFY: Apply XF =md to the crate. fo<un and fi = yn.

SET UP: Let +y be upward and let +x be in the direction of the push. Since the floor is horizontal and
the push is horizontal, the normal force equals the weight of the crate: n=mg =441 N. The force it takes

to start the crate moving equals max f; and the force required to keep it moving equals f.

A =% =0.710. f, =208 N, so yy = % =0.472.

(b) The friction is kinetic. XF, =ma, gives F' — f, =ma and

F = fi + ma =208 N +(45.0 kg)(1.10 m/s?) =258 N.

(¢) (i) The normal force now is mg =72.9 N. To cause it to move,

F =max f, = un=(0.710)(72.9 N)=51.8 N.

F—fi  258N-(0.472)(72.9 N)
m 45.0 kg

EVALUATE: The kinetic friction force is independent of the speed of the object. On the moon, the mass of
the crate is the same as on earth, but the weight and normal force are less.

EXECUTE: (a) max f, =313 N, so

(i) F=f, +ma and a= =4.97 m/s*

IDENTIFY: Newton’s second law applies to the rocks on the hill. When they are moving, kinetic friction
acts on them, but when they are at rest, static friction acts.

SET UP: Use coordinates with axes parallel and perpendicular to the incline, with +x in the direction of
the acceleration. XF, =ma, and XF), =ma, =0.

EXECUTE: With the rock sliding up the hill, the friction force is down the hill. The free-body diagram is
given in Figure 5.30a.
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5.31.

mgsing

A\ &b
\ N\ mecosd
\

(a) (h)

X

Figure 5.30

XF, =ma, =0 gives n=mgcos¢ and f, =yn=[ymgcosp. ELF, =ma, gives

mgsin @+ (,mg cos P = ma.

a=g(sing+ 1, cosg) = (9.80 m/s*)[sin36°+(0.45)cos36°]. a =9.33 m/s>, down the incline.

(b) The component of gravity down the incline is mgsin¢@ = 0.588mg. The maximum possible static
friction force is f, = yn = ymgcosd=0.526mg. f, can’t be as large as mgsing and the rock slides back
down. As the rock slides down, f; is up the incline. The free-body diagram is given in Figure 5.30b.

XF,=ma, =0 gives n=mgcos¢ and f, =un=mgcosg. XF, =ma, gives

mgsin@— (4, mgcosP=ma, so a=g(sing— 4 cos@)=2.19 m/s?, down the incline.
EVALUATE: The acceleration down the incline in (a) is greater than that in (b) because in (a) the static

friction and gravity are both acting down the incline, whereas in (b) friction is up the incline, opposing
gravity which still acts down the incline.

IDENTIFY: Apply =F =ma to the composite object consisting of the two boxes and to the top box. The
friction the ramp exerts on the lower box is kinetic friction. The upper box doesn’t slip relative to the lower
box, so the friction between the two boxes is static. Since the speed is constant the acceleration is zero.

SET UP: Let +x be up the incline. The free-body diagrams for the composite object and for the upper box
2.50 m

475m’

¢=27.76°. Since the boxes move down the ramp, the kinetic friction force exerted on the lower box by

are given in Figures 5.31a and b. The slope angle ¢ of the ramp is given by tang = S0

the ramp is directed up the incline. To prevent slipping relative to the lower box the static friction force on
the upper box is directed up the incline. m,; =32.0 kg +48.0 kg =80.0 kg.

EXECUTE: (a) XF) =ma,applied to the composite object gives ny, =m,gcos¢ and

Jx =mgcosg. TF =ma, gives fi +T —m,gsing=0 and

T =(sin@ — ty cos@)m, g = (sin27.76° —[0.444]¢c0s27.76°)(80.0 kg)(9.80 m/sz) =57.1N.

The person must apply a force of 57.1 N, directed up the ramp.

(b) XF, = ma, applied to the upper box gives f, =mgsing =(32.0 kg)(9.80 m/sz)sin 27.76° =146 N,
directed up the ramp.

EVALUATE: For each object the net force is zero.
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5.32.

5.33.

a=10

My, g sing 4

Figure 5.31

IDENTIFY: For the shortest time, the acceleration is a maximum, so the toolbox is just ready to slide
relative to the bed of the truck. The box is at rest relative to the truck, but it is accelerating relative to the
ground because the truck is accelerating. Therefore Newton’s second law will be useful.

SET Up: If the truck accelerates to the right the static friction force on the box is to the right, to try to
prevent the box from sliding relative to the truck. The free-body diagram for the box is given in

Figure 5.32. The maximum acceleration of the box occurs when f; has its maximum value, so f; = yn.

If the box doesn’t slide, its acceleration equals the acceleration of the truck. The constant-acceleration
equation v, =v,, + a,t applies.

J mg

Figure 5.32

EXECUTE: n=mg. XF,=ma, gives f,=ma so ymg=ma and a=pu,g=06.37 m/s?, Vor =0,
Ve — Vg, _ 30.0m/s -0

. 6.37 m/s’

EVALUATE: If the truck has a smaller acceleration it is still true that f; = ma, but now f, < un.

=471s

v, =30.0m/s. v, =v,, +a, gives t = ;

IDENTIFY: Use XF =md to find the acceleration that can be given to the car by the kinetic friction force.
Then use a constant acceleration equation.
SET Up: Take +x in the direction the car is moving.

EXECUTE: (a) The free-body diagram for the car is shown in Figure 5.33. XF, =ma, gives n=mg.
XF, =ma, gives —n=ma,. —pmg=ma, and a, =—g4 g. Then v, =0 and vf = vgx +2a,(x—xy)
Vox _ . o __ (287mis)*
2a, 24 2(0.80)(9.80 m/s?)

(b) vo, =228 (x — Xg) =~/2(0.25)(9.80 m/s?)52.5 m =16.0 m/s

gives (x—xp)=— S5m.
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2
EVALUATE: For constant stopping distance —2 is constant and Vo, is proportional to ./t . The answer
Hy
to part (b) can be calculated as (28.7 m/s)~/0.25/0.80 =16.0 m/s.
y
n Y
S = mn
- ® x
mg
Figure 5.33
5.34. IDENTIFY: Constant speed means zero acceleration for each block. If the block is moving, the friction
force the tabletop exerts on it is kinetic friction. Apply £F =ma to each block.
SET UP: The free-body diagrams and choice of coordinates for each block are given by Figure 5.34.
m,=4.59 kg and mp =2.55kg.
EXECUTE: (a) £F, =ma, with a, =0 applied to block B gives mpg—T =0 and 7'=25.0 N.
XF, =ma, with a, =0 applied to block 4 gives T — f;, =0 and f; =25.0N. n,=m,g=450N and
250N
=L BON_ o ss6
ny 450N
(b) Now let A be block 4 plus the cat, so m,=9.18 kg. ny =90.0 N and
S =n=(0.556)(90.0 N) =50.0 N. 2 F, =ma, for 4 gives T — fy =mya,. > Fy= ma,, for block B
gives mpg —T =mpa,,. a,for A equals a, for B, so adding the two equations gives
X - 250N-50.0N S
mpg = fi =(my+mg)a, and a, = mp8 ~Jic =-2.13 m/s>. The acceleration is
my+mp  9.18 kg+2.55 kg
upward and block B slows down.
EVALUATE: The equation mpg — fi =(m, +mpg)a, has a simple interpretation. If both blocks are
considered together then there are two external forces: mpg that acts to move the system one way and fi
that acts oppositely. The net force of mpg — fi must accelerate a total mass of m 4+ mg.
5
| s
7
e i 'u
K —2x  ——
T
myg
mgg ¥
.‘.
Figure 5.34
5.35. IDENTIFY: Apply ZF =ma to each crate. The rope exerts force T'to the right on crate 4 and force T to

the left on crate B. The target variables are the forces I"and F. Constant v implies a =0.
SET UP: The free-body diagram for A is sketched in Figure 5.35a
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y EXECUTE:
ZFy =ma,

ny—myg=0
x ny=myg

Ja = teny = phem 48

Figure 5.35a

XF . =ma,

T—-fiu=0

T'=ymyg

SET UP: The free-body diagram for B is sketched in Figure 5.35b.

v EXECUTE:
ZFy =ma,
ng—mpg =0
x ng=mg§g

Jxg = yng = thmpg

Figure 5.35b

XF, . =ma,

F-T-fiz=0

F=T+mmpg

Use the first equation to replace 7" in the second:

F=pom,g+ thmpg.

(@) F=wm(my+mp)g

(b) T'=ymyg

EVALUATE: We can also consider both crates together as a single object of mass (m, +mpg). XF, =ma,

for this combined object gives F = fi = 1 (m,+mp)g, in agreement with our answer in part (a).
5.36. IDENTIFY: Apply *F =ma to the box. When the box is ready to slip the static friction force has its

maximum possible value, f, = in.

SET Up: Use coordinates parallel and perpendicular to the ramp.

EXECUTE: (a) The normal force will be wcos ¢ and the component of the gravitational force along the
ramp is wsin ¢. The box begins to slip when wsina > gwcosa, or tan o > 1, = 0.35, so slipping occurs
at o =arctan(0.35)=19.3°.

(b) When moving, the friction force along the ramp is g wcos¢, the component of the gravitational force
along the ramp is wsin¢, so the acceleration is

(wsina —wy, cosor)/m = g(sinor — iy cosa) = 0.92 m/s>.

(¢) Since vy, =0, 2ax=v?, so v=2ax)"?, or v=[(2)(0.92m/s*)(5 m)|"? =3 mys.
EVALUATE: When the box starts to move, friction changes from static to kinetic and the friction force
becomes smaller.

5.37. IDENTIFY: Apply *F =ma to each block. The target variables are the tension 7' in the cord and the
acceleration a of the blocks. Then a can be used in a constant acceleration equation to find the speed of
each block. The magnitude of the acceleration is the same for both blocks.

SET Up: The system is sketched in Figure 5.37a.
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For each block take a positive
coordinate direction to be the direction
of the block’s acceleration.

my = 1.30 kg

Figure 5.37a

block on the table: The free-body is sketched in Figure 5.37b.

EXECUTE:

XF, =ma,

n-mug=0
n=myg

Jk == thom g

Figure 5.37b

L, =ma,

T—fi=mya

T —pmyg =mya

SET UP: hanging block: The free-body is sketched in Figure 5.37c.

T EXECUTE:

" F, =ma,
ul mpg—T =mga
myg T=mpg—mpa

Figure 5.37¢

(a) Use the second equation in the first
mp& —mpa = hym,g =mya
(my+mp)a=(mg—pymy)g

L (mp—pm g _ (130 kg - (0-45)(2.25 kg))(9.-80 mis’)

=0.7937 m/s>
my+mpg 2.25kg+1.30 kg

SET UP: Now use the constant acceleration equations to find the final speed. Note that the blocks have the
same speeds. x—x,=0.0300 m, a, =0.7937 m/s?, Vor =0, v, =?

2 2

Vi =V, +2a,(x—xp)

EXECUTE: v, =,[2a,(x—X,) = \/2(0.7937 m/s?)(0.0300 m) = 0.218 m/s = 21.8 cms.

(b) T=myg—mpa=mg(g—a)=130 kg(9.80 m/s* —0.7937 m/s*)=11.7 N

Or, to check, T —yymyg =m a.

T=m,(a+1.g)=2.25kg(0.7937 m/s* +(0.45)(9.80 m/s*)) =11.7 N, which checks.

EVALUATE: The force T exerted by the cord has the same value for each block. 7 <mpgg since the

hanging block accelerates downward. Also, f, =4 m,g=9.92 N. T > f, and the block on the table
accelerates in the direction of 7.
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5.38. IDENTIFY: Apply F =mad to the box.
SET UP: Let +y be upward and +x be horizontal, in the direction of the acceleration. Constant speed
means a =0.
EXECUTE: (a) There is no net force in the vertical direction, so n+ Fsind—-w=0, or

n=w-—Fsin@=mg — Fsin@. The friction force is f = iy n = 4 (mg— Fsin@). The net horizontal force
is Fcos@— f, = Fcos@— uy (mg—Fsin@), and so at constant speed,

_ Hymg
cosf + yy sin@

(0.35)(90 kg)(9.80m/s?)
(c0s25°+(0.35)sin25°)
EVALUATE: If 6=0° F = mg.

(b) Using the given values, F = 290 N.

5.39.  (a) IDENTIFY: Apply ZF =ma to the crate. Constant v implies a =0. Crate moving says that the friction
is kinetic friction. The target variable is the magnitude of the force applied by the woman.
SET Up: The free-body diagram for the crate is sketched in Figure 5.39.

EXECUTE:

XF, =ma,
n—mg—Fsin@=0

n=mg+ Fsin@

Jx = e = phmg + i Fsin

Figure 5.39

XF, =ma,
Fcos6—f, =0
Fcos@— uymg — 4y Fsinf=0
F(cos@—py sin@) =y mg
F= Hmg
cosf — uy sin6
(b) IDENTIFY and SET UP: “start the crate moving” means the same force diagram as in part (a), except
that g isreplaced by u,. Thus F = &
cosf — y sin@
cosé 1
sin@ - tan@
EVALUATE: F has a downward component so n>mg. If =0 (woman pushes horizontally), n = mg
and F = fi =y mg.
5.40. IDENTIFY: Apply F =ma to the ball. At the terminal speed, f =mg.

SET Up: The fluid resistance is directed opposite to the velocity of the object. At half the terminal speed,
the magnitude of the frictional force is one-fourth the weight.

EXECUTE: (a) If the ball is moving up, the frictional force is down, so the magnitude of the net force is
(5/4)w and the acceleration is (5/4)g, down.

EXECUTE: F — oo if cos@— u sinf=0. This gives y, =

(b) While moving down, the frictional force is up, and the magnitude of the net force is (3/4)w and the
acceleration is (3/4)g, down.

EVALUATE: The frictional force is less than mg in each case and in each case the net force is downward
and the acceleration is downward.
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5.41. IDENTIFY and SET UP: Apply Eq. (5.13).
_mg _ (80 kg)(9.80 m/s”)
V7 (42 m/s)?

EXECUTE: (a) Solving for D in terms of v;, D

(b) v, = /@: (45 kg)(9.80 m/s?) P
“\'p (0.25 kg/m) '

EVALUATE: “Terminal speed depends on the mass of the falling object.”

=0.44 kg/m.

5.42. IDENTIFY: The acceleration of the car at the top and bottom is toward the center of the circle, and
Newton’s second law applies to it.

SET UP: Two forces are acting on the car, gravity and the normal force. At point B (the top), both forces
are toward the center of the circle, so Newton’s second law gives mg + ny = ma. At point 4 (the bottom),

gravity is downward but the normal force is upward, so n, —mg = ma.
EXECUTE: Solving the equation at B for the acceleration gives

,_mg+ng _ (0.800 kg)(98 m/s’)+6.00 N
m 0.800 kg

gives 1, = m(g+a)=(0.800 kg)(9.8 m/s* +17.3 m/s?)=21.7 N.

=17.3 m/s”. Solving the equation at 4 for the normal force

EVALUATE: The normal force at the bottom is greater than at the top because it must balance the weight
in addition to accelerate the car toward the center of its track.

5.43. IDENTIFY: Apply XF =ma to one of the masses. The mass moves in a circular path, so has acceleration
2
veo
Apad = ' directed toward the center of the path.

SET UP: In each case, R =0.200 m. In part (a), let +x be toward the center of the circle, so a, =a,4. In

part (b) let +y be toward the center of the circle, so a, =a,,y. +y is downward when the mass is at the

y
top of the circle and +y is upward when the mass is at the bottom of the circle. Since a,,4 has its greatest
possible value, F is in the direction of d.q atboth positions.

2
EXECUTE: (a) XF, =ma, gives F =ma 4 = m% F=75.0N and

- /Qz (75.0 N)(0.200 m)=3.61 s,
m 1.15kg

(b) The free-body diagrams for a mass at the top of the path and at the bottom of the path are given in
Figure 5.43. At the top, 2F, =ma, gives F =maq—mg and at the bottom it gives F' =mg +may,q. For

a given rotation rate and hence value of a4, the value of F required is larger at the bottom of the path.

rad >

2
F
(¢©) F=mg+mag, so %:——gand
m

v= R(E—gj= (0.200 m) TSON 980 mis? | =3.33 mis
m 1.15kg

EVALUATE: The maximum speed is less for the vertical circle. At the bottom of the vertical path F and
the weight are in opposite directions so ' must exceed ma,,q by an amount equal to mg. At the top of the

vertical path F and mg are in the same direction and together provide the required net force, so £ must be
larger at the bottom.
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mg

top bottom

Figure 5.43

5.44. IDENTIFY: Since the car travels in an arc of a circle, it has acceleration a4 = v?/R, directed toward the

center of the arc. The only horizontal force on the car is the static friction force exerted by the roadway.
To calculate the minimum coefficient of friction that is required, set the static friction force equal to its
maximum value, f; = yn. Friction is static friction because the car is not sliding in the radial direction.

SET Up: The free-body diagram for the car is given in Figure 5.44. The diagram assumes the center of the
curve is to the left of the car.

2 2
EXECUTE: (a) XF) =ma, gives n=mg. XLF, =ma, gives Un= m% Hmg = m% and

p v (25.0mi)’
T gR (9.80 m/s)(220 m)

2 2 2
(b) Y _ Rg = constant, so N _% vy =V Hs2 _ (25.0 m/s) /’US—IB =14.4 m/s.
M Hy g Hs) Hs)

EVALUATE: A smaller coefficient of friction means a smaller maximum friction force, a smaller possible
acceleration and therefore a smaller speed.

Oy

me
Figure 5.44

5.45. IDENTIFY: We can use the analysis done in Example 5.22. As in that example, we assume friction is negligible.
2
SET UpP: From Example 5.22, the banking angle £ is given by tan = V—R Also, n=mg/cosf.
&

65.0 mi/h =29.1my/s.

(29.1 mvs)?
(9.80 m/s>)(225 m)
the mass of the vehicle, so the truck and car should travel at the same speed.
(1125 kg)(9.80 m/s?)
B cos21.0°

EXECUTE: (a) tan = and f=21.0°. The expression for tan # does not involve

(b) For the car, ng,, =1.18x10* N and Miuck = 2Mcar = 2.36x10% N, since

Miruck = 2m«:ar :

EVALUATE: The vertical component of the normal force must equal the weight of the vehicle, so the
normal force is proportional to m.
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5.46.

5.47.

IDENTIFY: The acceleration of the person is a4 = v?/R, directed horizontally to the left in the figure in

the problem. The time for one revolution is the period 7 = m Apply ZF =ma to the person.
v

SET UP: The person moves in a circle of radius R =3.00 m + (5.00 m)sin30.0°=5.50 m. The free-body

diagram is given in Figure 5.46. F is the force applied to the seat by the rod.
mg

EXECUTE: (a) XF, =ma, gives Fco0s30.0°=mg and F =——=—.
@) Y v & & c0s30.0°

XF, =ma, gives

2
Fsin30.0° = m% Combining these two equations gives

v=4/Rgtanf = \/(5.50 m)(9.80 m/s2)tan30.0° =5.58 m/s. Then the period is
_2zR _ 27(5.50 m)
v 5.58ms
(b) The net force is proportional to m so in XF =ma the mass divides out and the angle for a given rate of
rotation is independent of the mass of the passengers.

EVALUATE: The person moves in a horizontal circle so the acceleration is horizontal. The net inward
force required for circular motion is produced by a component of the force exerted on the seat by the rod.

T =6.19s.

y

a., -
rad Fcos30°

Fsin30° |

' mg
Figure 5.46

IDENTIFY: Apply SF =ma to the composite object of the person plus seat. This object moves in a

horizontal circle and has acceleration a directed toward the center of the circle.

rad>
SET UP: The free-body diagram for the composite object is given in Figure 5.47. Let +x be to the right,
in the direction of @4. Let +y be upward. The radius of the circular path is R =7.50 m. The total mass

is (255 N+825N)/(9.80 m/sz) =110.2 kg. Since the rotation rate is 32.0 rev/min =0.5333 rev/s, the

period T'is 875 s.

—:l.
0.5333 rev/s
mg  255N+825N

= =1410 N.
c0s40.0° c0s40.0°

EXECUTE: XF) =ma, gives T,c0s40.0°~mg=0 and T, =

XF, =ma, gives T,sin40.0°+ T =ma,y and

2 2
Ty = m4ﬂ—2R —T,sin40.0°=(110.2 kg)w -
T (1.875 s)
The tension in the horizontal cable is 8370 N and the tension in the other cable is 1410 N.
EVALUATE: The weight of the composite object is 1080 N. The tension in cable 4 is larger than this since
its vertical component must equal the weight. ma, 4y =9280 N. The tension in cable B is less than this

(1410 N)sin40.0°=8370 N

because part of the required inward force comes from a component of the tension in cable A.
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Y mg

Figure 5.47

5.48. IDENTIFY: Apply ZF =ma to the button. The button moves in a circle, so it has acceleration Arad-

SET UP: The situation is equivalent to that of Example 5.21.
2 2

EXECUTE: (a) 4, = I‘;— Expressing v in terms of the period 7, v= # SO Uy = A‘;[TR A platform
g 4

47%(0.150 m)
(1.505)%(9.80 m/s?)
(b) For the same coefficient of static friction, the maximum radius is proportional to the square of the

period (longer periods mean slower speeds, so the button may be moved farther out) and so is inversely
proportional to the square of the speed. Thus, at the higher speed, the maximum radius is

speed of 40.0 rev/min corresponds to a period of 1.50's, so u, = 269.

2
(0.150 m)(ﬂj =0.067 m.
60.0
2

4r°R

EVALUATE: a4 =
72

. The maximum radial acceleration that friction can give is fmg. At the faster

rotation rate 7 is smaller so R must be smaller to keep a,,4 the same.

, , o 47’R

5.49. IDENTIFY: The acceleration due to circular motion is a4 = %

SETUP: R=400m. 1/T is the number of revolutions per second.
EXECUTE: (a) Setting a4y = g and solving for the period T gives

=2 R on ILH‘Z —40.1s,
g 9.80 m/s

so the number of revolutions per minute is (60 s/min)/(40.1 s) =1.5 rev/min.
(b) The lower acceleration corresponds to a longer period, and hence a lower rotation rate, by a factor of

the square root of the ratio of the accelerations, T’ = (1.5 rev/min)x+/3.70/9.8 = 0.92 rev/min.

2
. . L v
EVALUATE: In part (a) the tangential speed of a point at the rim is given by a4 = ' S0

v=,/Ra.,q =+/Rg =62.6 m/s; the space station is rotating rapidly.
5.50. IDENTIFY: T = ﬂ The apparent weight of a person is the normal force exerted on him by the seat he
v

is sitting on. His acceleration is a4 = v?/R, directed toward the center of the circle.
SET UP: The period is 7 =60.0 s. The passenger has mass m =w/g =90.0 kg.

2 2
_27R _2mG00m) _ 5 o4 s Note that ayg =2 = SZ8S)” ¢ 549 2,
T 60.0's R 500m

EXECUTE: (a) v
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(b) The free-body diagram for the person at the top of his path is given in Figure 5.50a. The acceleration is
downward, so take +y downward. XF), =ma,, gives mg—n=ma,,.
n=m(g —a,y)=(90.0 kg)(9.80 m/s* —0.549 m/s*) =833 N.
The free-body diagram for the person at the bottom of his path is given in Figure 5.50b. The acceleration is
upward, so take +y upward. XF, =ma, gives n—mg=mayq and n=m(g+a,q) =931 N.
2

(c) Apparent weight=0 means n=0 and mg =ma, . g= % and v=./gR =22.1 m/s. The time for one
27R _ 27(50.0 m)

v 22.1 m/s
d) n=m(g+a,y)=2mg=2(882N)=1760 N, twice his true weight.

revolution would be T =

=14.2 s. Note that a4 = g.

EVALUATE: At the top of his path his apparent weight is less than his true weight and at the bottom of his
path his apparent weight is greater than his true weight.

— x 1“!‘:&]

|
mg

y mg

@) (b)
Figure 5.50a, b

5.51. IDENTIFY: Apply SF =ma to the motion of the pilot. The pilot moves in a vertical circle. The apparent
weight is the normal force exerted on him. At each point @,y is directed toward the center of the circular
path.

(a) SETUp: “the pilot feels weightless” means that the vertical normal force n exerted on the pilot by

the chair on which the pilot sits is zero. The force diagram for the pilot at the top of the path is given in
Figure 5.51a.

" EXECUTE:
l l ZFy =ma,
a_ . mg Mg = Mdraq
£=%

Figure 5.51a
Thus v=1/gR =+/(9.80 m/s?)(150 m) =38.34 m/s

v =(38.34 ms)| X[ 369051 _ 3¢ ki

10° m lh

(b) Set Up: The force diagram for the pilot at the bottom of the path is given in Figure 5.51b. Note that
the vertical normal force exerted on the pilot by the chair on which the pilot sits is now upward.
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EXECUTE:
ZFy =ma,

n v2
Tl"!illl n_mg:m_

B n=mg+m—

This normal force is the pilot’s

apparent weight.
Figure 5.51b

w=700 N, so m=—=71.43 kg

g
3
v:(280km/h)( 1h J 10" m | _ 27 78 mys
36005 )| 1km

(77.78 m/s)?

m

Thus n=700 N+71.43 kg =3580 N.

EVALUATE: In part (b), n>mg since the acceleration is upward. The pilot feels he is much heavier than

when at rest. The speed is not constant, but it is still true that a4 = v?/R at each point of the motion.

5.52. IDENTIFY: a. 4= v?/R, directed toward the center of the circular path. At the bottom of the dive, Qg 18
upward. The apparent weight of the pilot is the normal force exerted on her by the seat on which she is
sitting.

SET UP: The free-body diagram for the pilot is given in Figure 5.52.
2 2 2
. .0
EXECUTE: (a) a,g = - gives R= Y- (95—m/s)2 =230 m.
Arag  4.00(9.80 m/s7)
(b) XF, =ma, gives n—mg=ma,.
n=m(g+ag,y)=m(g+4.00g)=>5.00mg =(5.00)(50.0 kg)(9.80 m/s?)=2450 N
EVALUATE: Her apparent weight is five times her true weight, the force of gravity the earth exerts on her.
¥
n
| *"r:ld
X
|
mg
Figure 5.52
5.53.

IDENTIFY: Apply ZF =md to the water. The water moves in a vertical circle. The target variable is the
speed v; we will calculate a,,4 and then get v from a4 = VIR

SET UP: Consider the free-body diagram for the water when the pail is at the top of its circular path, as
shown in Figures 5.53a and b.
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5.54.

5.55.

S =g The radial acceleration is in toward the center
S N of the circle so at this point is downward. 7 is the
downward normal force exerted on the water by
l aq the bottom of the pail.

Figure 5.53a

EXECUTE:

ZFy =ma,

n+mg—mv2
R

Figure 5.53b

At the minimum speed the water is just ready to lose contact with the bottom of the pail, so at this speed,

n — 0. (Note that the force n cannot be upward.)
2

With n — 0 the equation becomes mg = m% v=4/gR = \/(9.80 m/sz)(0.600 m) =2.42 m/s.

EVALUATE: At the minimum speed a4 = g. If v is less than this minimum speed, gravity pulls the water
(and bucket) out of the circular path.
IDENTIFY: The ball has acceleration a4 = v?/R, directed toward the center of the circular path. When

the ball is at the bottom of the swing, its acceleration is upward.

SET UP: Take +y upward, in the direction of the acceleration. The bowling ball has mass
m=w/g=1727kg.

v (4.20 m/s)?

EXECUTE: (a) a4 = z 330m

(b) The free-body diagram is given in Figure 5.54. £F), =ma,, gives T —mg =mayyy.

=4.64 m/s, upward.

T =m(g+ay,y)=(7.27 kg)(9.80 m/s> +4.64 m/s*) =105 N

EVALUATE: The acceleration is upward, so the net force is upward and the tension is greater than the weight.

'\'

T
Orygd

mg
Figure 5.54

IDENTIFY: Since the arm is swinging in a circle, objects in it are accelerated toward the center of the
circle, and Newton’s second law applies to them.

SETUP: R =0.700 m. A 45° angle is é of a full rotation, so in % s a hand travels through a distance of

%(ZHR). In (c) use coordinates where +y is upward, in the direction of a4 at the bottom of the swing.

2
S v
The acceleration is a,,q4 = —.
R
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EXECUTE: (a) v=— =1.10 m/s and a,q =— =1.73 m/s*.
0.50 s

8 R 0.700 m
(b) The free-body diagram is shown in Figure 5.55. F is the force exerted by the blood vessel.

1( 27R j v (1.10 m/s)?

v

w=mg

Figure 5.55

(¢) £F), =ma, gives F —w=ma,, and

F=m(g+ agy)=(1.00x107kg)(9.80 m/s*> +1.73 m/s*) =1.15x 107> N, upward.

(d) When the arm hangs vertically and is at rest, a,q =0 so F'=w=mg =9.8x 107N,

EVALUATE: The acceleration of the hand is only about 20% of g, so the increase in the force on the blood
drop when the arm swings is about 20%.

5.56. IDENTIFY: Apply Newton’s first law to the person. Each half of the rope exerts a force on him, directed
along the rope and equal to the tension 7 in the rope.
SET Up: (a) The force diagram for the person is given in Figure 5.56.

v

T and T, are the

I~~~ ----- T, tensions in each half of
the rope.

TI cosB T cosB

w=mg

Figure 5.56

EXECUTE: XF, =0

T, cos0—T cos@=0

This says that 7} =7, =T (The tension is the same on both sides of the person.)
IF, =0

Tisin@+T,sinf—-mg =0

But 7, =7, =T, so 2Tsinf =mg

_mg _ (90.0 kg)(9.80 m/s?)
2sin@ 2sin10.0°

=2540 N

(b) The relation 27'sinf = mg still applies but now we are given that 7' =2.50% 10* N (the breaking
strength) and are asked to find 6.

_mg _ (90.0 kg)(9.80 m/s”)

sin@ 7]
2T 2(2.50%x10™ N)

=0.01764, 6=1.01°.
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EVALUATE: T =mg/(2sin#) says that T =mg/2 when 6=90° (rope is vertical).

T — e when 6 — 0 since the upward component of the tension becomes a smaller fraction of the tension.
5.57. IDENTIFY: Apply TF =ma to the knot.

SETUP: a=0. Use coordinates with axes that are horizontal and vertical.

EXECUTE: (a) The free-body diagram for the knot is sketched in Figure 5.57.

T; is more vertical so supports more of the weight and is larger. You can also see this from XF, =ma,:

15 cos40° —T;cos60°=0. T, cos40°—1T; cos60°=0.

(b) T; is larger so set 7; =5000 N. Then 7, =7;/1.532=3263.5 N. ZF, =ma, gives

T;sin60°+ 7, sin40°=w and w=6400 N.

EVALUATE: The sum of the vertical components of the two tensions equals the weight of the suspended
object. The sum of the tensions is greater than the weight.

Figure 5.57

5.58. IDENTIFY: Apply ZF =md to each object. Constant speed means a = 0.
SET Up: The free-body diagrams are sketched in Figure 5.58. T; is the tension in the lower chain, 7, is
the tension in the upper chain and 7' = F is the tension in the rope.
EXECUTE: The tension in the lower chain balances the weight and so is equal to w. The lower pulley must

have no net force on it, so twice the tension in the rope must be equal to w and the tension in the rope,
which equals F, is w/2. Then, the downward force on the upper pulley due to the rope is also w, and so the

upper chain exerts a force w on the upper pulley, and the tension in the upper chain is also w.
EVALUATE: The pulley combination allows the worker to lift a weight w by applying a force of only w/2.

T T T T

Figure 5.58

5.59. IDENTIFY: Apply Newton’s first law to the ball. The force of the wall on the ball and the force of the ball
on the wall are related by Newton’s third law.
SET UP: The forces on the ball are its weight, the tension in the wire, and the normal force applied by the wall.
16.0 cm

To calculate the angle ¢ that the wire makes with the wall, use Figure 5.59a. sin¢ = and ¢ =20.35°

cm
EXECUTE: (a) The free-body diagram is shown in Figure 5.59b. Use the x and y coordinates shown in the

w o (45.0 kg)(9.80 m/s?)
cos@ c0s20.35°

figure. XF), =0 gives Tcos¢p—w=0 and T = =470 N
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(b) XF, =0 gives Tsing—n=0. n=(470 N)sin20.35° =163 N. By Newton’s third law, the force the
ball exerts on the wall is 163 N, directed to the right.

EVALUATE: n :( W ]Sin¢ =wtang@. As the angle ¢ decreases (by increasing the length of the wire),

cos¢

T decreases and n decreases.

h
T cos ¢
(.b

30cm [ T sin ¢

n - -

Figure 5.59a, b

5.60. IDENTIFY: Apply Newton’s first law to the ball. Treat the ball as a particle.

SET Up: The forces on the ball are gravity, the tension in the wire and the normal force exerted by the surface.
The normal force is perpendicular to the surface of the ramp. Use x and y axes that are horizontal and vertical.

EXECUTE: (a) The free-body diagram for the ball is given in Figure 5.60. The normal force has been
replaced by its x and y components.

mg
c0s35.0°
(¢) ZF, =0 gives T'—nsin35.0°=0 and 7 =(1.22mg)sin35.0° = 0.700mg.

(b) XF, =0 gives ncos35.0°~w=0 and n= =1.22mg.

EVALUATE: Note that the normal force is greater than the weight, and increases without limit as the angle
of the ramp increases toward 90°. The tension in the wire is wtan@, where ¢ is the angle of the ramp and

T also increases without limit as ¢ — 90°.

| n cos 35°

|
1 sin 35° -

Figure 5.60
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5.61. IDENTIFY: Kinematics will give us the acceleration of the person, and Newton’s second law will give us
the force (the target variable) that his arms exert on the rest of his body.
SET Up: Let the person’s weight be ¥, so W =680 N. Assume constant acceleration during the speeding
up motion and assume that the body moves upward 15 cm in 0.50 s while speeding up. The constant-
acceleration kinematics formula y — y = vy, ¢ + %aytz and XF), = ma, apply. The free-body diagram for
the person is given in Figure 5.61. F is the force exerted on him by his arms.
.\I
'L- t{!
—4 X
W
Figure 5.61
EXECUTE: v, =0, y—yy=0.15m, 1=0.50s. y—y,=vy,t+ %ayz‘2 gives
a,= 20y ;yo) = 200.15 n;) =12 m/s%. LF, =ma, gives F—W =ma. m =Z, S0
t (0.50 ) g
F= W[l + £]=1.12W=762 N.
g
EVALUATE: The force is greater than his weight, which it must be if he is to accelerate upward.
5.62. IDENTIFY: The person is first in free fall and then slows down uniformly. Newton’s second law and the

constant-acceleration kinematics formulas apply while she is falling and also while she is slowing down.
SET Up: Take +y downward. (a) Assume the hip is in free fall. (b) The free-body diagram for the person
is given in Figure 5.62. It is assumed that the whole mass of the person has the same acceleration as her
hip. The formulas v 2 vgy +2a,(y =), v, =Wy, +ay, and ZF, =ma, apply to the person.

y
1::

n
A

Figure 5.62

EXECUTE: (a) v, =0, y—-y;=10m, a,=+9.80 m/s>. vi = vgy +2a,(y — ) gives

v, = 24,y yp) =2(9.80 m/s>)(1.0 m) = 4.4 m/s.

(b) vo, =44 m/s, y—y,;=0.020m, v, =13m/s. v =v5, +2a,(y—y,) gives

-, (13 mhs)’ - (4.4 mjs)’

a,= = = —440 m/s’. The acceleration is 440 m/sz, upward.
2(y =) 2(0.020 m)
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XF, =ma, gives w—n=—ma and n=w+ma=m(a+g)=(55kg)(440 m/s* +9.80 m/s*) =25,000 N.

Vy—Voy 13m/s—44m/s

5 7.0 ms
a, —440 m/s

(c) v, =Vg, T a,t gives ¢ =

EVALUATE: When the velocity change occurs over a small distance the acceleration is large.
5.63. IDENTIFY: We know the forces on the box and want to find information about its position and velocity.
Newton’s second law will give us the box’s acceleration.
>F
SETUP: a, ()= — We can integrate the acceleration to find the velocity and the velocity to find the
m
position. At an altitude of several hundred meters, the acceleration due to gravity is essentially the same as
it is at the earth’s surface.
EXECUTE: Let +y be upward. Newton’s second law gives T —mg =ma,, so
a,(1)=(12.0 m/s’)t —9.8 m/s”. Integrating the acceleration gives v, () =(6.00 m/s’)r* — (9.8 m/s*)t.
(@) () At 1=1.00s, v, =-3.80m/s. (ii) At 7=3.00s, v, =24.6 m/s.

(b) Integrating the velocity gives y -y, =(2.00 m/s’)’ — (4.9 m/s”)*. v, =0 at 1=1.63s. At 1=1.63s,
y=yy=871m-13.07 m=-4.36 m.
(c) Setting y — y, =0 and solving for ¢ gives 1 =2.45s.

EVALUATE: The box accelerates and initially moves downward until the tension exceeds the weight of the
box. Once the tension exceeds the weight, the box will begin to accelerate upward and will eventually
move upward, as we saw in part (b).

5.64. IDENTIFY: We can use the standard kinematics formulas because the force (and hence the acceleration) is
constant, and we can use Newton’s second law to find the force needed to cause that acceleration. Kinetic
friction, not static friction, is acting.

. . 1 . .
SET UP: From kinematics, we have x —xy = vy, + Eaxt2 and XF, =ma, applies. Forces perpendicular

to the ramp balance. The force of kinetic friction is fi = 4 mgcosé.
EXECUTE: Call +x upward along the surface of the ramp. Kinematics gives

2(x—xp) _ 2(8.00 m)
=72 = 2

t (4.00 s)

gives F =m(a, +gsin@+ ,mgcosf) = (5.00 kg)(1.00 m/s> + 4.9 m/s” +3.395 m/s>) =46.5 N.
EVALUTE: As long as the box is moving, only kinetic friction, not static friction, acts on it. The force can
be less than the weight of the box because only part of the box’s weight acts down the ramp.

5.65. IDENTIFY: The system of boxes is accelerating, so we apply Newton’s second law to each box. The friction is
kinetic friction. We can use the known acceleration to find the tension and the mass of the second box.

=1.00 m/s°. XF, =ma, gives F —mgsin@— ymgcosé=ma,. Solving for F'

SET UP: The force of friction is fy = wn, XF, = ma, applies to each box, and the forces perpendicular
to the surface balance.

EXECUTE: (a) Call the +x axis along the surface. For the 5 kg block, the vertical forces balance, so
n+ Fsin53.1°—mg =0, which gives n=49.0 N-31.99 N=17.01 N. The force of kinetic friction is

fk =u, n=5104N. Applying Newton’s second law along the surface gives F c0s53.1°—T — f, =ma.
Solving for T gives T = F cos53.1°~ f, —ma=24.02N-510 N-750 N=11.4 N.
(b) For the second box, T — f; =ma. T —H, mg =ma. Solving for m gives

T 11.42N
M g+a  (0.3)9.8m/s*)+1.5 m/s®

m =2.57 kg.

EVALUATE: The normal force for box B is less than its weight due to the upward pull, but the normal
force for box A4 is equal to its weight because the rope pulls horizontally on 4.
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5.66.

5.67.

5.68.

5.69.

IDENTIFY: The horizontal force has a component up the ramp and a component perpendicular to the surface
of the ramp. The upward component causes the upward acceleration and the perpendicular component affects
the normal force on the box. Newton’s second law applies. The forces perpendicular to the surface balance.
SET UP: Balance forces perpendicular to the ramp: n—mgcos@ — Fsin6 =0. Apply Newton’s second

law parallel to the ramp surface: F cosé — fk —mgsin@ = ma.

EXECUTE: Using the above equations gives n =mgcos@+ Fsin@. The force of friction is f, = yn, so
Jx =, (mgcos@+ Fsinf). Fcosf—u, mgeost—u, Fsing—mgsind=ma. Solving for F gives

e m(a +,ukgcos¢9+gsin6')

- . Putting in the numbers, we get
cosf — A, sin 6

— (6:00 kg)[4.20 m/s” +(0.30)(9.80 m/s*)cos37.0° +(9.80 m/s*)sin37.0°]
¢0s37.0°—(0.30)sin37.0°

EVALUATE: Even though the push is horizontal, it can cause a vertical acceleration because it causes the

normal force to have a vertical component greater than the vertical component of the box’s weight.

IDENTIFY: Both blocks have the same constant acceleration. Kinematics will give us the acceleration,

Newton’s laws will give us the mass of block 4, and kinetic friction is acting.

SET UP: Newton’s second law applies to each block. The standard kinematics formulas can be used because

the acceleration is constant. The normal force on A4 is mg, so the force of friction on it is f, =t mg.

o Lo . L 2(y— 2(5.
EXECUTE: The initial velocity is zero, so kinematics gives a, = & 3 Yo) = ((350(;)0 I)I;)
t .00s

=121IN

=1.111 m/s>.

For block B, Newton’s second law gives mgg —T = mpa, so

T =my(g—a)=(6.00 kg)(9.8 m/s> —1.111 m/s>) =52.13 N. Forblock 4, n=mg, so f; = mg. Using

this in Newton’s second law gives T — f, =ma, so T — 4y mg =ma. Solving for m gives

__r _ 52.13N _10
a+ig  1.111 m/s* +(0.40)(9.80 m/s?)

EVALUATE: Instead of breaking it up into two parts, we could think of the blocks as a two-mass system.
In that case, Newton’s second law would give mpg — fi = (m+ mp)a. Substituting for f, makes this

m

4 kg.

mpg — wm g = (my + mpg)a, which gives the same result.

IDENTIFY: This is a system having constant acceleration, so we can use the standard kinematics formulas
as well as Newton’s second law to find the unknown mass m,.

SET UP: Newton’s second law applies to each block. The standard kinematics formulas can be used to
find the acceleration because the acceleration is constant. The normal force on m; is mgcosa, so the

force of friction on itis f = iy mgcosa.
EXECUTE: Standard kinematics gives the acceleration of the system to be
_ 2(y—yp) _ 2(12.0 m)
4y =7 = 2
t (3.00 s)
S =(0.40)(117.7 N)=47.08 N. Applying Newton’s second law to m; gives T — fi —mgsina=ma,

=2.667 m/s>. For my,n=mgcoscx=117.7 N, so the friction force on m, is

where T is the tension in the cord. Solving for T gives

T=fi +mgsina+ma=47.08 N+156.7 N+53.34 N=257.1 N. Newton’s second law for m, gives
T 257.1N

g-a 9.8 m/s*—2.667 m/s>

EVALUATE: This problem is similar to Problem 5.67, except for the sloped surface. As in that problem,

we could treat these blocks as a two-block system. Newton’s second law would then give

myg — myg sin o — py my g cos & = (my + m,)a, which gives the same result as above.

myg —T =mya, so m, = =36.0 kg.

IDENTIFY: [ = un. Apply F =md to the tire.
SETUP: n=mg and [ =ma.
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2
Vo= . . . .
EXECUTE: a, = 7 0., where L is the distance covered before the wheel’s speed is reduced to half its

2 .2 21,2 2
original speed and v=vy/2. i, = a_ X7V 0 470 _ EV_O_
g 2Lg 2Lg 8Lg

2
Low pressure, L=18.1m and 3 (3.50 m/s) 5~ =0.0259.
8 (18.1 m)(9.80 m/s”)
2
High pressure, L=92.9 m and 3__B30ms) 5—=0.00505.
8(92.9 m)(9.80 m/s”)

.. . . L
EVALUATE: . is inversely proportional to the distance L, so A _ 72
Hio 1
5.70. IDENTIFY: Apply SF =ma to the combined rope plus block to find a. Then apply F =ma to a section
of the rope of length x. First note the limiting values of the tension. The system is sketched in Figure 5.70a.

F At the top of the rope T =F
T At the bottom of the rope T =M (g +a)
[

m

M

Figure 5.70a

SET Up: Consider the rope and block as one combined object, in order to calculate the acceleration: The
free-body diagram is sketched in Figure 5.70b.

y EXECUTE:
”f . ZFy =ma,
F-(M+m)g=(M +m)a

' F
“= M+m

(M+m)g

Figure 5.70b

SET UP: Now consider the forces on a section of the rope that extends a distance x < L below the top.
The tension at the bottom of this section is 7'(x) and the mass of this section is m(x/L). The free-body
diagram is sketched in Figure 5.70c.

¥ EXECUTE:
: T . ZFy =ma,

F-T(x)-m(x/L)g =m(x/L)a
T(x)=F —m(x/L)g —m(x/L)a

Figure 5.70c
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Using our expression for a and simplifying gives
T(x)=F|1-—"
L(M +m)

EVALUATE: Important to check this result for the limiting cases:
x =0: The expression gives the correct value of 7 =F.
x = L: The expression gives T = F(M/(M + m)). This should equal 7= M (g +a), and when we use the

expression for a we see that it does.

5.71. IDENTIFY: Apply XF =ma to each block.
SET UpP: Constant speed means a = 0. When the blocks are moving, the friction force is f,, and when
they are at rest, the friction force is f;.
EXECUTE: (a) The tension in the cord must be m,g in order that the hanging block move at constant
speed. This tension must overcome friction and the component of the gravitational force along the incline,
80 myg =(mgsina + ymgcosa) and my, =my(sina+ f cos).
(b) In this case, the friction force acts in the same direction as the tension on the block of mass m;, so
myg = (mgsina — fmgcosc), or my, =my(sina — ty cosc).
(c) Similar to the analysis of parts (a) and (b), the largest m, could be is my(sina + g ,coser) and the
smallest m, could be is my(sine — g cosa).

EVALUATE: In parts (a) and (b) the friction force changes direction when the direction of the motion of
my changes. In part (c), for the largest m, the static friction force on m is directed down the incline and

for the smallest m, the static friction force on m, is directed up the incline.

5.72.  IDENTIFY: The system is in equilibrium. Apply Newton’s first law to block 4, to the hanging weight and
to the knot where the cords meet. Target variables are the two forces.
(a) SET Up: The free-body diagram for the hanging block is given in Figure 5.72a.

y EXECUTE:
ZFy =ma,
-w=0
I;=120N

Figure 5.72a

SET UP: The free-body diagram for the knot is given in Figure 5.72b.

Y EXECUTE:
Tysinds” IF, =ma,
T,sin45.0°-73 =0
T 120N
Ty =— =—
sin45.0° sin45.0°
7,=17.0N
T,

Figure 5.72b
ZEY = max

T,c0845.0°~7, =0
T, =T,c0s45.0°=12.0 N
SET UP: The free-body diagram for block 4 is given in Figure 5.72c.
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EXECUTE:
ZF:\” = mav\”
hi-f=0
fi=11=12.0N
Figure 5.72¢
EVALUATE: Also can apply XF) =ma, to this block:
n-wy,=0
n=w,=60.0N

Then un=(0.25)(60.0 N)=15.0 N; this is the maximum possible value for the static friction force.
We see that f; < yn; for this value of w the static friction force can hold the blocks in place.

(b) SET UpP: We have all the same free-body diagrams and force equations as in part (a) but now the static
friction force has its largest possible value, f, =#n=15.0N. Then T3 = f, =15.0 N.

EXECUTE: From the equations for the forces on the knot
T, c0s845.0°~T; =0 implies T, =T;/cos45.0°= 150N 212N

c0s45.0°
T,sin45.0°—T; =0 implies 73 =7,5in45.0°=(21.2 N)sin45.0°=15.0 N
And finally 73 —w=0 implies w=7; =15.0 N.
EVALUATE: Compared to part (a), the friction is larger in part (b) by a factor of (15.0/12.0) and w is
larger by this same ratio.

5.73. IDENTIFY: Apply F =ma to each block. Use Newton’s third law to relate forces on A4 and on B.

SET UP: Constant speed means a =0.
EXECUTE: (a) Treat 4 and B as a single object of weight w=w, +wp = 6.00 N. The free-body diagram
for this combined object is given in Figure 5.73a. XF), =ma,, gives n=w=6.00 N. fi =/4n=180N.
XF . =ma, gives F'= f, =1.80 N.
(b) The free-body force diagrams for blocks 4 and B are given in Figure 5.73b. n and f, are the normal and
friction forces applied to block B by the tabletop and are the same as in part (a). f,p is the friction force that
A applies to B. It is to the right because the force from 4 opposes the motion of B. njp is the downward force
that 4 exerts on B. f| 4 is the friction force that B applies to 4. It is to the left because block B wants 4 to
move with it. n, is the normal force that block B exerts on 4. By Newton’s third law, f, 3 = f4 and these

forces are in opposite directions. Also, n, = np and these forces are in opposite directions.

XF, =ma, forblock 4 gives n, =w,=240N, so ng =2.40 N.

Jia = =(0.300)(2.40 N) =0.720 N, and f,z =0.720 N.
2F.=ma, forblock 4 gives T = f , =0.720 N.
XF, =ma, forblock B gives F = fip+ fi =0.720 N+1.80 N=2.52 N.

EVALUATE: In part (a) block 4 is at rest with respect to B and it has zero acceleration. There is no
horizontal force on A4 besides friction, and the friction force on 4 is zero. A larger force F is needed in part
(b), because of the friction force between the two blocks.
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n
Ty

]r kB

fi

T wy

HH : v “I:‘
w block B block A
(a) (b) (9

Figure 5.73a—

5.74. IDENTIFY: Apply SF =ma to the brush. Constant speed means a = 0. Target variables are two of the
forces on the brush.
SET UP: Note that the normal force exerted by the wall is horizontal, since it is perpendicular to the wall.
The kinetic friction force exerted by the wall is parallel to the wall and opposes the motion, so it is
vertically downward. The free-body diagram is given in Figure 5.74.

y EXECUTE:

XF, =ma,
n—Fcos53.1°=0
n=Fcos53.1°

x fk :ﬂk}’l:‘[lkFCOSSS.lo

Fsin 53.1"

F cos 53.1°

I!"
Figure 5.74

IF,=ma,: Fsin53.1°-w—f, =0. Fsin53.1°-=w— 4 Fc0s53.1°=0. F(sin53.1°— 4 cos53.1°) = w.
F=— ld :

sin53.1°— g cos53.1°

1
(@) F=— “ == N =21.IN
sin53.1°— g4 c0s53.1°  sin53.1°—(0.150)cos53.1°

(b) n=Fcos53.1°=(21.1 N)cos53.1°=12.7 N
EVALUATE: In the absence of friction w= F'sin53.1°, which agrees with our expression.

5.75. IDENTIFY: The net force at any time is F,,, = ma.

SETUP: At t=0, a=62g. The maximum acceleration is 140g at t =1.2 ms.

EXECUTE: (a) F,., =ma=62mg =62(210x10"° kg)(9.80 m/s*) =1.3x10~* N. This force is 62 times the
flea’s weight.
(b) F, =140mg =29x10™* N, at r=12ms.
(c) Since the initial speed is zero, the maximum speed is the area under the a, —¢ graph. This gives 1.2 my/s.
EVALUATE: « is much larger than g and the net external force is much larger than the flea’s weight.

5.76. IDENTIFY: Apply =F =ma to the instrument and calculate the acceleration. Then use constant
acceleration equations to describe the motion.

SET UP: The free-body diagram for the instrument is given in Figure 5.76. The instrument has mass
m=w/g =1531kg.

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



Applying Newton’s Laws 5-39

EXECUTE: (a) Adding the forces on the instrument, we have XF), =ma,, which gives T —mg =ma and

y’

_T-mg _ 2 _ _ _ 2, _ . _
a=—-=25=19.6m/s". voy—O,vy—330m/s,ay—19.6m/s ,t=? Then v, =Vp, ta,t gives t=16.8s.
m

Consider forces on the rocket; rocket has the same a,. Let F be the thrust of the rocket engines.
F—mg=ma and F =m(g+a)=(25,000 kg)(9.80 m/s”> +19.6 m/sz) =7.35x10°N.
(b) y—yo=vo,t +%ayt2 gives y — ¥y =2770 m.

EVALUATE: The rocket and instrument have the same acceleration. The tension in the wire is over twice
the weight of the instrument and the upward acceleration is greater than g.

mg

Figure 5.76

5.77. IDENTIFY: a=dv/dt. Apply TF =ma to yourself.
SET Up: The reading of the scale is equal to the normal force the scale applies to you.

dv(t)

EXECUTE: The elevator’s acceleration is a = e =3.0m/s> + 2(0.20 m/s3)t =3.0m/s> + (0.40 m/s3)t.

At 1=4.0s,a=3.0m/s> + (0.40 m/s3)(4.0 s)=4.6 m/s?. From Newton’s second law, the net force on you

is Fy = Fipe —w=ma and F,,, =w+ma = (64 kg)(9.8 m/s*) + (64 kg)(4.6 m/s*) =920 N.
EVALUATE: a« increases with time, so the scale reading is increasing.
5.78. IDENTIFY: Apply F =md to the passenger to find the maximum allowed acceleration. Then use a

constant acceleration equation to find the maximum speed.
SET UpP: The free-body diagram for the passenger is given in Figure 5.78.

EXECUTE: XF, =ma, gives n—mg=ma. n=1.6mg, so a=0.60g=>5.88 m/s>.
y=yy=3.0m,a, =588 m/sz,voy =0 so vﬁ :vgy +2a,(y—y,) gives v, =5.9m/s.

EVALUATE: A larger final speed would require a larger value of a,,, which would mean a larger normal

y b
force on the person.

mg

Figure 5.78

5.79. IDENTIFY: Apply SF =ma to the package. Calculate a and then use a constant acceleration equation to
describe the motion.
SET UP: Let +x be directed up the ramp.

EXECUTE: (a) F,, =-mgsin37°— fi =—-mgsin37° - ymgcos37°=ma and

a =—(9.8 m/s%)(0.602 + (0.30)(0.799)) = —8.25 m/s>
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Since we know the length of the slope, we can use vf = vgx +2a,(x—xy) with x,=0 and v, =0 at the

top. vg = —2ax =-2(-8.25m/s*)(8.0 m) =132 m?/s*> and v, =132 m%/s*> =11.5 /s
(b) For the trip back down the slope, gravity and the friction force operate in opposite directions to each

other. F =—-mgsin37°+ g mgcos37°=ma and

a=g(~sin37°+0.30 c0s37°) = (9.8 m/s>)((—0.602) + (0.30)(0.799)) = —3.55 m/s’.

Now we have vy, =0,xy =—8.0 m,x=0 and

vE =22 +2a(x—xp) = 0+2(-3.55m/s*)(—8.0 m) = 56.8 m?/s?, so v=1/56.8m?/s? =7.54 m/s.
EVALUATE: In both cases, moving up the incline and moving down the incline, the acceleration is
directed down the incline. The magnitude of « is greater when the package is going up the incline, because
mgsin37° and f, are in the same direction whereas when the package is going down these two forces are
in opposite directions.

5.80. IDENTIFY: Apply F =ma to the hammer. Since the hammer is at rest relative to the bus, its acceleration
equals that of the bus.
SET UP: The free-body diagram for the hammer is given in Figure 5.80.

EXECUTE: XF), =ma, gives T'sin67°—mg =0 so I'sin67°=mg. XF, =ma, gives T'cos67°=ma.

Divide the second equation by the first: 2- ! and a = 4.2 m/s’.
g tan67°

EVALUATE: When the acceleration increases, the angle between the rope and the ceiling of the bus
decreases, and the angle the rope makes with the vertical increases.

Figure 5.80

5.81. IDENTIFY: Apply ZF =ma to the washer and to the crate. Since the washer is at rest relative to the crate,
these two objects have the same acceleration.
SET UP: The free-body diagram for the washer is given in Figure 5.81.
EXECUTE: It’s interesting to look at the string’s angle measured from the perpendicular to the top of the crate.
This angle is 6, =90° —angle measured from the top of the crate. The free-body diagram for the washer

string

then leads to the following equations, using Newton’s second law and taking the upslope direction as positive:

—My, & SiNGyqpe + T8I0 Oyyin, =mya and T'sinbyyp, =my, (a+ g sinbype)
—My, & €08 Oyjope + T COS Oy =0 and T cos Gy =1y, & €08 Gy
o . a+gsing,
Dividing the two equations: tan6;,, = — o7 Slope
gcos Hslope
For the crate, the component of the weight along the slope is —mg sin 6, and the normal force is
Mg cos ;.. Using Newton’s second law again: —m g sin Gyqpe + 41,8 €08 by =M a.
a+gsinbyqp. . . . . . :
M, =—— . This leads to the interesting observation that the string will hang at an angle whose
gcos eslope

tangent is equal to the coefficient of kinetic friction:

My =tan G, = tan(90° — 68°) = tan 22° = 0.40.

tring

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



Applying Newton’s Laws 5-41

EVALUATE: In the limit that 4 — 0, Bjip,

— 0 and the string is perpendicular to the top of the crate.

As iy increases, G, increases.

tring

fl,

slope

myg

Figure 5.81

5.82. IDENTIFY: Apply SF =ma to yourself and calculate a. Then use constant acceleration equations to
describe the motion.
SET UP: The free-body diagram is given in Figure 5.82.
EXECUTE: (a) ZF), =ma, gives n=mgcosa. EF, =ma, gives mgsina— f =ma. Combining these

two equations, we have a = g(sino — gy.cosar) =—-3.094 mvs. Find your stopping distance:

v, =0,a, =-3.094 m/s?, Vo, =20 m/s. vf = vgx +2a,(x —xy) gives x —xy = 64.6 m, which is greater than
40 m. You don’t stop before you reach the hole, so you fall into it.

(b) a, =-3.094m/s?, x—xy =40 m, v, =0. v> =3 _+2a, (x—x,) gives vy, =16 m/s.

EVALUATE: Your stopping distance is proportional to the square of your initial speed, so your initial
speed is proportional to the square root of your stopping distance. To stop in 40 m instead of 64.6 m your

initial speed must be (20 m/s), | 0m 6 s,
64.6 m

Figure 5.82

5.83. IDENTIFY: Apply ZF =ma to each block and to the rope. The key idea in solving this problem is to recognize
that if the system is accelerating, the tension that block 4 exerts on the rope is different from the tension that
block B exerts on the rope. (Otherwise the net force on the rope would be zero, and the rope couldn’t accelerate.)
SET UP: Take a positive coordinate direction for each object to be in the direction of the acceleration of
that object. All three objects have the same magnitude of acceleration.

EXECUTE: The second law equations for the three different parts of the system are:
Block A (The only horizontal forces on A are tension to the right, and friction to the left): —y m g +7T, =m  a.

Block B (The only vertical forces on B are gravity down, and tension up): mpg — T = mpa.

Rope (The forces on the rope along the direction of its motion are the tensions at either end and the weight
of the portion of the rope that hangs vertically): m,p. [%) g+Tg—T =mypea.

To solve for a and eliminate the tensions, add the left-hand sides and right-hand sides of the three
mptmpope (d/L)—tymy
(my+mp+m

. d
equations: —f4m g + mgg + Mgy, [z) g=(my+mg+myy)a, ora=g )
rope
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mp +mrope (d/L)

a) When =0,a=g—m——.
( ) H g(mA +mB+mr0pe)

As the system moves, d will increase, approaching L as a limit,

. . . mp + myope

and thus the acceleration will approach a maximum value of a =g .
(my+mp+ mrope)

(b) For the blocks to just begin moving, a >0, so solve 0=[mp + mq,.(d/L) — tim 4] for d. Note that we

must use static friction to find d for when the block will begin to move. Solving for d,

d= L (Ugmy—mp) or d =1'0—m(0.25(2 kg)—0.4 kg)=0.63 m.
Mygpe 0.160 kg
(¢) When my,. =0.04 kg, d = 01(')(;111(1 (0.25(2 kg) — 0.4 kg) =2.50 m. This is not a physically possible
Ua kg

situation since d > L. The blocks won’t move, no matter what portion of the rope hangs over the edge.
EVALUATE: For the blocks to move when released, the weight of B plus the weight of the rope that hangs
vertically must be greater than the maximum static friction force on 4, which is gn=4.9 N.

5.84. IDENTIFY: Apply Newton’s first law to the rope. Let m; be the mass of that part of the rope that is on the
table, and let m, be the mass of that part of the rope that is hanging over the edge. (m; +m, = m, the total

mass of the rope). Since the mass of the rope is not being neglected, the tension in the rope varies along the
length of the rope. Let 7 be the tension in the rope at that point that is at the edge of the table.
SET UP: The free-body diagram for the hanging section of the rope is given in Figure 5.84a

) EXECUTE:

ZFy =ma,

a=o0 T-_r T-myg=0
T=mg

", g

Figure 5.84a

SET UP: The free-body diagram for that part of the rope that is on the table is given in Figure 5.84b.

) EXECUTE:

XF, =ma,
n—mg=0

n=mg

Figure 5.84b

When the maximum amount of rope hangs over the edge the static friction has its maximum value:
s = tsn = pgm g

SF, =ma,

T—-f,=0

T =pgmg

Use the first equation to replace T:

myg = Hgmg

my =ty
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. .om m
The fraction that hangs over is —2 = A K
m my + fsmy 1+ Hy

EVALUATE: As u, — 0, the fraction goes to zero and as 4, — o, the fraction goes to unity.

5.85. IDENTIFY: First calculate the maximum acceleration that the static friction force can give to the case.
Apply XF =ma to the case.
(a) SET Up: The static friction force is to the right in Figure 5.85a (northward) since it tries to make the
case move with the truck. The maximum value it can have is f; = 4 N.

EXECUTE:

ZFy =ma,

n—mg=0
n=mg

Js = Hsn = tsmg

Figure 5.85a

YF.=ma,. f,=ma. png=ma. a= g =(0.30)(9.80 m/sz) =2.94 m/s?. The truck’s acceleration is
less than this so the case doesn’t slip relative to the truck; the case’s acceleration is a =2.20 m/s?
(northward). Then f; = ma =(40.0 kg)(2.20 m/s?) =88.0 N, northward.

(b) IDENTIFY: Now the acceleration of the truck is greater than the acceleration that static friction can
give the case. Therefore, the case slips relative to the truck and the friction is kinetic friction. The friction
force still tries to keep the case moving with the truck, so the acceleration of the case and the friction force
are both southward. The free-body diagram is sketched in Figure 5.85b.

SET UP:

EXECUTE:

ZFy =ma,

n—mg=0

n=mg

Jx = thmg =(0.20)(40.0 kg)(9.80 m/s?)
Jfx =78 N, southward

Figure 5.85b

EVALUATE: f, =ma implies a = S = 78N =2.0 m/s’. The magnitude of the acceleration of the

m  40.0 kg

case is less than that of the truck and the case slides toward the front of the truck. In both parts (a) and (b)
the friction is in the direction of the motion and accelerates the case. Friction opposes relative motion
between two surfaces in contact.

5.86. IDENTIFY: Apply F =ma to the car to calculate its acceleration. Then use a constant acceleration
equation to find the initial speed.

SETUP: Let +x be in the direction of the car’s initial velocity. The friction force f is then in the
—x-direction. 192 ft =58.52 m.

EXECUTE: n=mg and f, = mg. ZF =ma, gives —iymg=ma, and

a, =— g =—(0.750)(9.80 m/s*) = ~7.35 m/s>. v, =0 (stops), x—x, =58.52 m. V2 =v} +2a, (x-x,)
gives vy, =+/—2a,(x—xy) = \/—2(—7.35 m/sz)(58.52 m) =29.3 m/s =65.5 mi/h. He was guilty.
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5.87.

5.88.

Chapter 5
22 2
EVALUATE: x-x= "2—0" =——0* fhis initial speed had been 45 mi/h he would have stopped in
ax ax
N2
ASmih 105 fy =01 f
65.5 mi/h

IDENTIFY: Apply ZF =ma to the point where the three wires join and also to one of the balls. By
symmetry the tension in each of the 35.0 cm wires is the same.
SET UP: The geometry of the situation is sketched in Figure 5.87a. The angle ¢ that each wire makes

with the vertical is given by sing = 25 cm

s and ¢=15.26°. Let T, be the tension in the vertical wire
Scm

and let T be the tension in each of the other two wires. Neglect the weight of the wires. The free-body
diagram for the left-hand ball is given in Figure 5.87b and for the point where the wires join in Figure 5.87c.
n is the force one ball exerts on the other.

EXECUTE: (a) XF, =ma, applied to the ball gives T cos¢—mg =0.

T, =M _ (15.0 kg)(9.80 m/s?)
cos¢@ cos15.26°

T,—2Tgcos¢p=0 and 7, =2(152 N)cos¢ =294 N.

(b) XF, =ma, applied to the ball gives n—Tpsing=0 and n = (152 N)sin15.26°=40.0 N.

EVALUATE: T, equals the total weight of the two balls.

=152 N. Then XF, =ma, applied in Figure 5.87c gives

35.0em
¥ ¥
- TR
|

Tycosd| [d)

i
. 1Ty sin

me Ty~ Ty

Figure 5.87a—

IDENTIFY: Apply ZF =ma to the box. Compare the acceleration of the box to the acceleration of the
truck and use constant acceleration equations to describe the motion.

SET UP: Both objects have acceleration in the same direction; take this to be the +x-direction.

EXECUTE: If the box were to remain at rest relative to the truck, the friction force would need to cause an

acceleration of 2.20 m/sz; however, the maximum acceleration possible due to static friction is
(0.19)(9.80 m/ sz) =1.86 m/s?, and so the box will move relative to the truck; the acceleration of the box
would be 4 g =(0.15)(9.80 m/sz) =1.47 m/s>. The difference between the distance the truck moves and

the distance the box moves (i.e., the distance the box moves relative to the truck) will be 1.80 m after a time

t:\/ 2Ax :\/ 2(1.80 m) s,

Ak —dpox | (2.20 m/s? —1.47 m/s?)
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In this time, the truck moves %amkt2 = %(2.20m/s2 )(2.2215)* =5.43 m.

EVALUATE: To prevent the box from sliding off the truck the coefficient of static friction would have to
be 1, =(2.20 m/s*)/g =0.224.

5.89. IDENTIFY: Apply F =mi to each block. Forces between the blocks are related by Newton’s third law.

The target variable is the force F. Block B is pulled to the left at constant speed, so block 4 moves to the
right at constant speed and a =0 for each block.

SET UP: The free-body diagram for block 4 is given in Figure 5.89a. nyp, is the normal force that B
exerts on A. fp, = 4 np, is the kinetic friction force that B exerts on 4. Block 4 moves to the right

relative to B, and fp, opposes this motion, so fp, is to the left. Note also that F acts just on B, not on 4.

EXECUTE:
a=0 =
" XF, =ma,
BA
Hpg =Wy = 0
- T

fou = tengs =(0.30)(1.90 N)=0.57 N

Figure 5.89a

SET UP: The free-body diagram for block B is given in Figure 5.89b.

Figure 5.89b

EXECUTE: nyp is the normal force that block A4 exerts on block B. By Newton’s third law 7,5 and ng,
are equal in magnitude and opposite in direction, so n,5 =1.90 N. f,p is the kinetic friction force that 4
exerts on B. Block B moves to the left relative to 4 and f,z opposes this motion, so f,p is to the right.
fup =ty p =(0.30)1.90 N)=0.42 N. nand f; are the normal and friction force exerted by the floor on
block B; fi = t4n. Note that block B moves to the left relative to the floor and f, opposes this motion, so

Jx 1s to the right.

ZFy=may: n—wg—nyp=0. n=wp+n,=420N+1.90 N=6.10 N. Then
Jx =t4n=(030)6.10N)=1.83N. ZF, =ma,: fpp+T+ fi —F=0.
F=T+f;p+f,=057TN+057N+1.83 N=3.0N.

EVALUATE: Note that f,p and fp, are a third law action-reaction pair, so they must be equal in
magnitude and opposite in direction and this is indeed what our calculation gives.
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5.90. IDENTIFY: Apply ZF =ma to the person to find the acceleration the PAPS unit produces. Apply
constant acceleration equations to her free fall motion and to her motion after the PAPS fires.
SET UP: We take the upward direction as positive.

EXECUTE: The explorer’s vertical acceleration is —3.7 m/s? for the first 20 s. Thus at the end of that time
her vertical velocity will be v, =at=(-3.7 rn/sz)(ZO s) =—74 m/s. She will have fallen a distance

dev i (—74 m/s

vertical velocity must reach zero as she touches the ground; therefore, taking the ignition point of the
PAPS as

j(20 s) =—740 m and will thus be 1200 m — 740 m =460 m above the surface. Her

Vi =v5, 0—(-T4mls)
2(y =) —460 m
acceleration that must be provided by the PAPS. The time it takes to reach the ground is given by
_ Yy =V, _0-(-74 m/s)
a, 5.95 m/s*

=5.95m/s?, which is the vertical

2_ 2 .
Yo =0, vi=vy, +2a,(y—y,) gives a, =

t =124s

Using Newton’s second law for the vertical direction Fp,pg, —mg = ma. This gives

Fpapsy = m(a+ g) = (150 kg)(5.95+3.7) m/s> = 1450 N,

which is the vertical component of the PAPS force. The vehicle must also be brought to a stop horizontally
in 12.4 seconds; the acceleration needed to do this is

vy =Vo,  0-33m/s

=2.66m/s>
Y t 12.4s

a

and the force needed is Fppg, = ma = (150 kg)(2.66 m/s?) =400 N, since there are no other horizontal forces.

EVALUATE: The acceleration produced by the PAPS must bring to zero both her horizontal and vertical
components of velocity.

5.91. IDENTIFY: Apply F =ma to each block. Parts (a) and (b) will be done together.

Figure 5.91a

Note that each block has the same magnitude of acceleration, but in different directions. For each block let
the direction of @ be a positive coordinate direction.

SET UP: The free-body diagram for block 4 is given in Figure 5.91b.

¥ EXECUTE:
ZFy =ma,
uT Tas Typ—myg=mya
_ Typ=myla+g)
l ' T3 =4.00 kg(2.00 m/s> +9.80 m/s>) =472 N
iy g

Figure 5.91b
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5.92.

SET UP: The free-body diagram for block B is given in Figure 5.91c.

EXECUTE:

XF, =ma,
n—mpg =0

n=nmgg

Figure 5.91¢

S = thn =y mpg =(0.25)(12.0 kg)(9.80 m/s?)=29.4 N

L, =ma,

Tge = Typ — fi =mpa

Tpe =Ty + fy + mpa=472 N+29.4 N+(12.0 kg)(2.00 m/s%)

Tpc =100.6 N

SET UP: The free-body diagram for block C is sketched in Figure 5.91d.

" EXECUTE:
ul B XF, =ma,
mcg —Tpc =mca
l me(g—a)=Tpe
me & _ Tpe _ 100.6 N
S g-a  9.80 m/s®—2.00 m/s>

me =129 kg

Figure 5.91d

EVALUATE: If all three blocks are considered together as a single object and £F =ma is applied to this
combined object, m-g —m g — (ympg = (m +mg +mc)a. Using the values for 1y, m, and my given

in the problem and the mass m- we calculated, this equation gives a =2.00 m/s>, which checks.

IDENTIFY: Apply EF =ma to each block. They have the same magnitude of acceleration, a.

SET Up: Consider positive accelerations to be to the right (up and to the right for the left-hand block,
down and to the right for the right-hand block).

EXECUTE: (a) The forces along the inclines and the accelerations are related by
T —(100 kg)gsin30.0° = (100 kg)a and (50 kg)gsin53.1°—T = (50 kg)a, where T is the tension in the

cord and a the mutual magnitude of acceleration. Adding these relations,
(50 kg sin53.1°—100 kg sin30.0°)g = (50 kg +100 kg)a, or a =—-0.067g. Since a comes out negative, the

blocks will slide to the left; the 100-kg block will slide down. Of course, if coordinates had been chosen so
that positive accelerations were to the left, a would be +0.067g.

(b) @ =0.067(9.80 m/s>) = 0.658 m/s>.

(c) Substituting the value of a (including the proper sign, depending on choice of coordinates) into either of
the above relations involving 7T yields 424 N.

EVALUATE: For part (a) we could have compared mg sin@ for each block to determine which direction
the system would move.
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5.93. IDENTIFY: Let the tensions in the ropes be 7; and 75.

Figure 5.93a

Consider the forces on each block. In each case take a positive coordinate direction in the direction of the
acceleration of that block.

SET UP: The free-body diagram for m is given in Figure 5.93b.

EXECUTE:
XF, =ma,

I =ma

Figure 5.93b

SET Up: The free-body diagram for m, is given in Figure 5.93c.

EXECUTE:

ZFy =ma,

ul l myg =T =mya,
m.,g

Figure 5.93¢

This gives us two equations, but there are four unknowns (7}, 75, a; and a, ) so two more equations are required.
SET UP: The free-body diagram for the moveable pulley (mass m) is given in Figure 5.93d.

T, T EXECUTE:
1 —_—
I 3F, =ma,

mg+T1, =21, =ma

2}
mg

Figure 5.93d

But our pulleys have negligible mass, so mg =ma =0 and T, = 27|. Combine these three equations to
eliminate 7} and 7, : myg —T, = mya, gives myg — 2T, = mya,. And then with 7} = mja; we have

myg — 2mya) = mya,.
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SET UP: There are still two unknowns, a; and a,. But the accelerations a; and a, are related. In any

time interval, if m; moves to the right a distance d, then in the same time m, moves downward a distance
d/2. One of the constant acceleration kinematic equations says x —x, = vq,f + %axtz, so if m, moves half

the distance it must have half the acceleration of my: a, =a;/2, or a; =2a,.

EXECUTE: This is the additional equation we need. Use it in the previous equation and get
myg —2my(2a,) = mya,.

ay(4my +my) = myg

m
EVALUATE: If my =0 or m; = oo, ay=a,=0.If my >m, a,=g and g =2g.

5.94. IDENTIFY: Apply SF =ma to block B, to block 4 and B as a composite object and to block C. If 4 and B
slide together all three blocks have the same magnitude of acceleration.
SET UP: If A4 and B don’t slip, the friction between them is static. The free-body diagrams for block B, for
blocks 4 and B, and for C are given in Figures 5.94a—c. Block C accelerates downward and 4 and B
accelerate to the right. In each case take a positive coordinate direction to be in the direction of the
acceleration. Since block 4 moves to the right, the friction force f; on block B is to the right, to prevent
relative motion between the two blocks. When C has its largest mass, f; has its largest value: f, = i n.
EXECUTE: XF, =ma, applied to the block B gives f, =mpa. n=mpg and f, = ympg. Hmpg =mpa and
a =g XF, =ma, applied to blocks 4+ B gives T =m yga =m pllg. XF, =ma, applied to block C gives

0.750
1-0.750

EVALUATE: With no friction from the tabletop, the system accelerates no matter how small the mass of C'is.
If m is less than 39.0 kg, the friction force that 4 exerts on B is less than g n. If m is greater than 39.0 kg,

meg =T =meca. meg —my gl 8@ =mcll,g . mc =nl1i—1i’ils=(5.0() kg +8.00 kg) j=39.0 kg.

S

blocks C and 4 have a larger acceleration than friction can give to block B, and 4 accelerates out from under B.

¥

! a 5 a ?-

| s | i a
n Man

r T = T
] —_—X

meg

myg m,yng V

block # blocks A+8 block C
Figure 5.94

5.95. IDENTIFY: Apply the method of Exercise 5.15 to calculate the acceleration of each object. Then apply
constant acceleration equations to the motion of the 2.00 kg object.
SET Up: After the 5.00 kg object reaches the floor, the 2.00 kg object is in free fall, with downward
acceleration g.

EXECUTE: The 2.00-kg object will accelerate upward at gw =3g/7, and the 5.00-kg
5.00 kg +2.00 kg

object will accelerate downward at 3g/7. Let the initial height above the ground be /,. When the large
object hits the ground, the small object will be at a height 2/4;, and moving upward with a speed given by

vg =2ahy = 6ghy/7. The small object will continue to rise a distance vg/ 2g =3hy/7, and so the maximum
height reached will be 2k +3h,/7 =17h,/7 =1.46 m above the floor , which is 0.860 m above its initial

height.
EVALUATE: The small object is 1.20 m above the floor when the large object strikes the floor, and it rises
an additional 0.26 m after that.
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5.96. IDENTIFY: Apply F =mi to the box.
SET UP: The box has an upward acceleration of a =1.90 m/s.
EXECUTE: The floor exerts an upward force n on the box, obtained from n—mg =ma, or n=m(a+ g).
The friction force that needs to be balanced is

tn = om(a+g)=(0.32)(28.0 kg)(1.90 m/s*> +9.80 m/s?) =105 N.

EVALUATE: If the elevator wasn’t accelerating the normal force would be n = mg and the friction force
that would have to be overcome would be 87.8 N. The upward acceleration increases the normal force and
that increases the friction force.

5.97. IDENTIFY: Apply ZF =ma to the block. The cart and the block have the same acceleration. The normal
force exerted by the cart on the block is perpendicular to the front of the cart, so is horizontal and to the
right. The friction force on the block is directed so as to hold the block up against the downward pull of
gravity. We want to calculate the minimum a required, so take static friction to have its maximum value,
Js = ln.

SET UP: The free-body diagram for the block is given in Figure 5.97.

EXECUTE:

XF, =ma,
n=ma

Js = Hsn = pgma

Figure 5.97

ZFy =ma,

fs—mg=0

Hsma =mg

a =gl

EVALUATE: An observer on the cart sees the block pinned there, with no reason for a horizontal force on
it because the block is at rest relative to the cart. Therefore, such an observer concludes that » =0 and thus

Js =0, and he doesn’t understand what holds the block up against the downward force of gravity. The

reason for this difficulty is that ZF =mdé does not apply in a coordinate frame attached to the cart. This
reference frame is accelerated, and hence not inertial. The smaller g is, the larger a must be to keep the
block pinned against the front of the cart.

5.98. IDENTIFY: Apply TF =md to each block.
SET UP: Use coordinates where +x is directed down the incline.
EXECUTE: (a) Since the larger block (the trailing block) has the larger coefficient of friction, it will need to be

pulled down the plane; i.e., the larger block will not move faster than the smaller block, and the blocks will have
the same acceleration. For the smaller block, (4.00 kg)g(sin30°—(0.25)c0s30°) — 7 = (4.00 kg)a, or

11.11 N-T =(4.00 kg)a, and similarly for the larger, 15.44 N+T =(8.00 kg)a. Adding these two
relations, 26.55 N =(12.00 kg)a, a=2.21 m/s.

(b) Substitution into either of the above relations gives 7'=2.27 N.

(¢) The string will be slack. The 4.00-kg block will have a =2.78 m/s® and the 8.00-kg block will have

a=1.93m/s?, until the 4.00-kg block overtakes the 8.00-kg block and collides with it.

EVALUATE: If the string is cut the acceleration of each block will be independent of the mass of that
block and will depend only on the slope angle and the coefficient of kinetic friction. The 8.00-kg block
would have a smaller acceleration even though it has a larger mass, since it has a larger .
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5.99. IDENTIFY: Apply F =md to the block and to the plank.
SET UP: Both objects have a =0.

EXECUTE: Let ny be the normal force between the plank and the block and 7, be the normal force
between the block and the incline. Then, nz =wcos@ and n, =ng +3wcos@ =4wcosé. The net frictional
force on the block is 1 (n +np) = 4 Swcos6. To move at constant speed, this must balance the
component of the block’s weight along the incline, so 3wsin& = g Swcos 8, and
fhe =3tanf = 3tan37° = 0.452.
EVALUATE: In the absence of the plank the block slides down at constant speed when the slope angle and
coefficient of friction are related by tan@= . For 6=36.9°, 1 =0.75. A smaller 1 is needed when
the plank is present because the plank provides an additional friction force.

5.100. IDENTIFY: Apply EF =md to the ball, to my and to m,.
SET Up: The free-body diagrams for the ball, m; and m, are given in Figures 5.100a—c. All three objects have
the same magnitude of acceleration. In each case take the direction of @ to be a positive coordinate direction.
EXECUTE: (a) ZF, =ma, applied to the ball gives T'cos@) =mg. XF, =ma, applied to the ball gives
T'sin@ =ma . Combining these two equations to eliminate 7 gives tané = a/g.
(b) XF, =ma, applied to m, gives T =mya. XF, =ma, applied to m; gives mg—T =ma. Combining

m 250 kg

these two equations gives a =( il j g. Then tan@ = and 6 =9.46°.

nmy + nmy
(¢) As m; becomes much larger than m,, a— g and tan&—1, so 8 — 45°.

EVALUATE: The device requires that the ball is at rest relative to the platform; any motion swinging back
and forth must be damped out. When m; << m, the system still accelerates, but with small « and 6 — 0°.

% a

S b

¥ a T

| —— i
T

! X n
T sinfl x
=
mg
|

mg msg ¥

|

|

@l

T cost :
|

Figure 5.100a—c

5.101. IDENTIFY: Apply XF =mad to the automobile.
2
SET UP: The “correct” banking angle is for zero friction and is given by tan f = V_(I)Q’ as derived in
&

Example 5.22. Use coordinates that are vertical and horizontal, since the acceleration is horizontal.
EXECUTE: For speeds larger than v, a frictional force is needed to keep the car from skidding. In this

case, the inward force will consist of a part due to the normal force » and the friction force

f; nsinf+ fcosff=ma,y. The normal and friction forces both have vertical components; since there is
. . X . V2 (1 . 5\/0 )2

no vertical acceleration, n cosff— f sinff =mg. Using f =pun and ayy= R=TR - 2.25 gtan 3,

these two relations become nsin 8+ pncos f=2.25mgtan f and ncos S — yunsin B =mg. Dividing to
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sinf+ s cos p C(,)S’B =2.25 tanf3. Solving for x and simplifying yields _1.25 sinfj cosp sinf c;)sﬂ.
cos B — u sin B 1+1.25sin” 3

(20 m/s)?
(9.80 m/s?)(120 m)

cancel n gives

Using S = arctan[ J =18.79° gives u, =0.34.

EVALUATE: If g is insufficient, the car skids away from the center of curvature of the roadway, so the
friction is inward.

5.102. IDENTIFY: Apply XF =ma to the car. The car moves in the arc of a horizontal circle, so @ = g,
directed toward the center of curvature of the roadway. The target variable is the speed of the car. a4 will

be calculated from the forces and then v will be calculated from a4 = VYR

(a) To keep the car from sliding up the banking the static friction force is directed down the incline. At
maximum speed the static friction force has its maximum value f; = yn.

SET UP: The free-body diagram for the car is sketched in Figure 5.102a.

y EXECUTE:
ZFy =ma,

ncos B — fsin f—mg =0
But f, = un, so
ncos f—unsin f—mg =0
PRSI S—

cos — usin B

f sinf

Figure 5.102a

XF . =ma,
nsin B+ yncos ff = may

n(sin B+ g cos f) = ma,,y

Use the XF), equation to replace n:

cos B — u sin B

_ s1nﬂ+ﬂsc9sﬂ g= sin25 +(0.30)c9525 (9.80 m/s?) =8.73 m/s?
cos § — i sin 3 c0825°—(0.30)sin25°

a.,g =Vv2/R implies v=.[a4R =+/(8.73 m/s?)(50 m) =21 my/s.

(b) IDENTIFY: To keep the car from sliding down the banking the static friction force is directed up the
incline. At the minimum speed the static friction force has its maximum value f; = yn.

[Lj(mnﬂ + lscos §) = mayy

Arad

SET Up: The free-body diagram for the car is sketched in Figure 5.102b.
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The free-body diagram is identical to that in
part (a) except that now the components of f;
have opposite directions. The force equations
are all the same except for the opposite sign for
terms containing /.

Figure 5.102b

EXECUTE: a4 = sinfi-piseos B [ sin25°=(0.30)c08257 ) g g /2y 43 g2
cos B+ g sin €0825°+(0.30)sin 25°

v=1Ja,qR =/(1.43 m/s*)(50 m) =8.5 m/s.

EVALUATE: For v between these maximum and minimum values, the car is held on the road at a constant
height by a static friction force that is less than gn. When g, — 0, a,q = gtan . Our analysis agrees

with the result of Example 5.22 in this special case.

5.103. IDENTIFY: Apply XF =md to each block.
SET UpP: For block B use coordinates parallel and perpendicular to the incline. Since they are connected
by ropes, blocks 4 and B also move with constant speed.
EXECUTE: (a) The free-body diagrams are sketched in Figure 5.103.
(b) The blocks move with constant speed, so there is no net force on block A4; the tension in the rope
connecting 4 and B must be equal to the frictional force on block 4, 7; =(0.35)(25.0 N) =8.8 N.

(¢) The weight of block C will be the tension in the rope connecting B and C; this is found by considering
the forces on block B. The components of force along the ramp are the tension in the first rope (8.8 N, from
part (b)), the component of the weight along the ramp, the friction on block B and the tension in the second
rope. Thus, the weight of block C is

we = 8.8 N+ wp(sin36.9° + 14, c0836.9°) = 8.8 N +(25.0 N)(sin 36.9° + (0.35)c0s 36.9°) = 30.8 N

The intermediate calculation of the first tension may be avoided to obtain the answer in terms of the
common weight w of blocks 4 and B, wy = w( + (sinf + g cos 8)), giving the same result.

(d) Applying Newton’s second law to the remaining masses (B and C) gives:
a=g(We — thywpcos@—wgsinb)/(wg +we) =1.54 m/s?.

EVALUATE: Before the rope between 4 and B is cut the net external force on the system is zero. When the
rope is cut the friction force on A4 is removed from the system and there is a net force on the system of
blocks B and C.

l Wy T, fs

wg

Figure 5.103
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5.104. IDENTIFY: The analysis of this problem is the same as that of Example 5.20.
2
SET UP: From Example 5.20, tan f= Yrad - Y
g Rg

EXECUTE: Solving for v in terms of § and R,

v=./gR tan f = \/(9.80 m/sz)(S0.0 m) tan30.0° =16.8 m/s, about 60.6 km/h.
EVALUATE: The greater the speed of the bus the larger will be the angle 3, so 7 will have a larger
horizontal, inward component.

5.105. IDENTIFY and SET UP: The monkey and bananas have the same mass and the tension in the rope has the
same upward value at the bananas and at the monkey. Therefore, the monkey and bananas will have the
same net force and hence the same acceleration, in both magnitude and direction.

EXECUTE: (a) For the monkey to move up, 7 > mg. The bananas also move up.

(b) The bananas and monkey move with the same acceleration and the distance between them remains
constant.
(c) Both the monkey and bananas are in free fall. They have the same initial velocity and as they fall the
distance between them doesn’t change.
(d) The bananas will slow down at the same rate as the monkey. If the monkey comes to a stop, so will the
bananas.
EVALUATE: None of these actions bring the monkey any closer to the bananas.

5.106. IDENTIFY: Apply IF =md, with f = kv.

SET Up: Follow the analysis that leads to Eq. (5.10), except now the initial speed is
Vo, =3mg/k =3v, rather than zero.

EXECUTE: The separated equation of motion has a lower limit of 3v, instead of 0; specifically,

I __ mit—r= ln[L— l\ = —ﬁt, orv=2v, {l+ e_(ld'")t}
VY 2w 2vy 2 m 2
EVALUATE: As ¢ — oo the speed approaches v,. The speed is always greater than v, and this limit is
approached from above.
5.107. IDENTIFY: Apply XF =md to the rock.
SET Up: Equations 5.9 through 5.13 apply, but with a, rather than g as the initial acceleration.
EXECUTE: (a) The rock is released from rest, and so there is initially no resistive force and
ap =(18.0 N)/(3.00 kg) = 6.00 m/s’.
(b) (18.0 N—(2.20 N -s/m) (3.00 m/s))/(3.00 kg) = 3.80 m/s.
(¢) The net force must be 1.80 N, so kv=16.2 N and v=(16.2 N)/(2.20 N-s/m)="7.36 m/s.
(d) When the net force is equal to zero, and hence the acceleration is zero, kv, =18.0 N and
v, =(18.0 N)/(2.20 N -s/m) =8.18 m/s.
(e) From Eq. (5.12),

y=(8.18m/s)| (2.00 5) —M(l _ o~((220 Ns/m)/(3.00 kg))(2.00 s)) 4778 m.
2.20 N-s/m

From Eq. (5.10), v=(8.18 m/s)[l — ¢~ (220 N-s/m)/(3.00 kg))(2.00 S)] =6.29 m/s.
From Eq. (5.11), but with a, instead of g, a = (6.00 m/s?)e~ (220 Nsm/G.00ke))(2.005) _ 1 38 /52,

M 1-L=01=e®" and =" 1n(10)=3.14s.
v k
EVALUATE: The acceleration decreases with time until it becomes zero when v =v,. The speed increases

with time and approaches v, as ¢ — co.
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5.108. IDENTIFY: Apply XF =ma to the rock. a = ? and v= % yield differential equations that can be
t

integrated to give v(¢) and x(¢).
SET Up: The retarding force of the surface is the only horizontal force acting.

F F 2 o
EXECUTE: (a) Thus g=-—0¢t ="R — _ and % = —idt. Integrating gives
m m m  dt m
v d 1/2 2.2
I _v = J. dt and 2v 1/2]‘ —. This gives v=v, — kt k tz .
vo !/ m 4m
1/2 2 2 1/2 2.2
For the rock’s position: ax_ Vo — Yo Kt + k—z and dx =vydt — ktdt k ! jt.
dt m 4m m 4m
o v 2kt? k2 3
Integrating gives x = vyt ———
2m 12m
1/2 kt 22
(b) v=0=vy,— 2— This is a quadratic equation in #; from the quadratic formula we can find the
m
2mv(1)/2

single solution ¢ =
(c) Substituting the expression for # into the equation for x:
2mv(1)/2 v(l)/zk 4m2v0 k* 8m3 32 2mvg/2
k 2m K 12m? k3 3k
B v 1 kv(l)/z
Qmvy?lk)y 2 m

. . Av
EVALUATE: The magnitude of the average acceleration is a,, = A
t

. The average

force is F,, =ma,, = %kvl/ 2, which is %times the initial value of the force.

5.109. IDENTIFY: Apply XF =md to the car.
SET Up: The forces on the car are the air drag force fj, = Dv? and the rolling friction force u,mg. Take
the velocity to be in the +x-direction. The forces are opposite in direction to the velocity.
EXECUTE: (a) ZF, =ma, gives -Dv? - M.mg =ma. We can write this equation twice, once with
v=32m/s and a =-0.42m/s> and once with v=24m/s and a =-0.30 m/s>. Solving these two
simultaneous equations in the unknowns D and g, gives y#, =0.015 and D=0.36 N- s?/m>.
(b) n=mgcos and the component of gravity parallel to the incline is mgsin §, where §=2.2°. For

constant speed, mgsin2.2°— g, mgcos2.2°— Dv? =0. Solving for v gives v=29 m/s.

\/mg(sinﬂ—ur cosf)
D

(c) For angle 5, mgsin S — u,mg cos 3 — Dv? =0 and v= . The terminal speed for a

falling object is derived from thz —-mg=0, so v,=+/mg/D. v/v,=./sinff—p, cosfB. And since

4, =0.015,v/v, = Jsin B—(0.015) cos/3.
EVALUATE: Inpart(c), v— v, as S — 90° since in that limit the incline becomes vertical.

5.110. IDENTIFY: The block has acceleration a4 = v2/r, directed to the left in the figure in the problem. Apply
EF =ma to the block.
SET UpP: The block moves in a horizontal circle of radius r = \/ (1.25 m)2 —(1.00 m)2 =0.75 m. Each

string makes an angle 6 with the vertical. cosf = i'gﬂ, so 8=36.9°. The free-body diagram for the

S5m
block is given in Figure 5.110. Let +x be to the left and let +y be upward.
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EXECUTE: (a) ZFy =ma, gives T, cos@ —T cosd—mg =0.

2
=1, -8 _g0.0N-_ 400 k)O-80 m/sT)
cosd €0s36.9°
2
(b) ZF, =ma, gives (T, +T;)sin®=m—.
p

=31.0N.

v= \/F(T“ Thsind _ \/(0'75 m)®0.0 N+31.0 N)sin36.9° _ 3.53 m/s. The number of revolutions per

m 4.00 kg
second is —— = _333mfs =0.749 rev/s =44.9 rev/min .
2zr  2m(0.75 m)
2 2

(©1f T, =0, T,cos8=mg and T, =8 = G00KOBOMST) _ 4\ 7 Ging=m?".
cosé c0s36.9° r

V= \/FT“ sin® = (0.75 m)(49.0 N)sin 36.9 =2.35 m/s. The number of revolutions per minute is

m 4.00 kg
(44.9 rev/min)(Mj =29.9 rev/min.
3.53 m/s

EVALUATE: The tension in the upper string must be greater than the tension in the lower string so that
together they produce an upward component of force that balances the weight of the block.

Vv

e Tu _______ .

I' ] T, cost

|

[

|

L\

: fl

T,sinfl |
X
Tisinf |

| A}
: Pl mg
s Tcosf

o

Figure 5.110

5.111.  IDENTIFY: Apply XF =md to the falling object.
SET Up: Follow the steps that lead to Eq. (5.10), except now v;,, = v, and is not zero.

. dv m dv k )
EXECUTE: (a) Newton’s second law gives m—2 = mg — kv,, where me _ Vi J —r = ——jdt. This
dt k v, =V m
vo Y 0
is the same expression used in the derivation of Eq. (5.10), except the lower limit in the velocity integral is
the initial speed v, instead of zero. Evaluating the integrals and rearranging gives

—kt/m —kt/m
v, =V +vi(l-e

). Note that at 7=0 this expression says v, =v, and at 1 —eo it says v, —>v,.
(b) The downward gravity force is larger than the upward fluid resistance force so the acceleration is
downward, until the fluid resistance force equals gravity when the terminal speed is reached. The object

speeds up until v, =v,. Take +y to be downward. The graph is sketched in Figure 5.111a.
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(¢) The upward resistance force is larger than the downward gravity force so the acceleration is upward and
the object slows down, until the fluid resistance force equals gravity when the terminal speed is reached.
Take +y to be downward. The graph is sketched in Figure 5.111b.

(d) When v, = v, the acceleration at ¢ =0 is zero and remains zero; the velocity is constant and equal to the

terminal velocity.
EVALUATE: In all cases the speed becomes v, as t — oo,

I\ -

Figure 5.111a, b

5.112. IDENTIFY: Apply XF =ma to the rock.
SET UP: At the maximum height, v, =0. Let +y be upward. Suppress the y subscripts on v and a.
EXECUTE: (a) To find the maximum height and time to the top without fluid resistance:
2_ .2 2 _ _
v 0 (6.0m/sz) 184 m =YY 0 6.0m/25
2a 2(-9.8 m/s”) a —9.8m/s

v2=v§+2a(y—y0) and y—y,= =0.61s.

. C dv .
(b) Starting from Newton’s second law for this situation m? =mg —kv. We rearrange and integrate,
t

taking downward as positive as in the text and noting that the velocity at the top of the rock’s flight is zero.
S . 0 dv k
The initial velocity is upward, so v, =—6.0 m/s. j =——t.
Yo V=, m

Vg 20 025)=—1.386
Vo — Wt —6.0m/s—2.0m/s

From Eq. (5.9), m/k =v/g =(2.0m/s?)/(9.8 m/s?) = 0.204 s, and

In(v—v)|% =In

t= —%(—1 386) =(0.204 5)(1.386) = 0.283 s to the top.

Integrating the expression for v, =dy/dt in part (a) of Problem 5.111 gives y = %e_kﬂm (v —vp) +vit.

At t=0.2835, y=0.974 m. At t=0,y=1.63 m. Therefore, y —y, =—-0.66 m. since +y is downward,

this says that the rock rises to a maximum height of 0.66 m above its initial position.
EVALUATE: With fluid resistance present the maximum height is much less and the time to reach it is less.
5.113.  (a) IDENTIFY: Use the information given about Jena to find the time ¢ for one revolution of the merry-go-

round. Her acceleration is a directed in toward the axis. Let Fl be the horizontal force that keeps her

rad’

from sliding off. Let her speed be v; and let R; be her distance from the axis. Apply F =mi to Jena,

who moves in uniform circular motion.
SET UP: The free-body diagram for Jena is sketched in Figure 5.113a

¥

EXECUTE:
2 F,=ma,

Fi =Mmagy

2
RK
3 =mv—1, v = ,/# =1.90 m/s
R m

Figure 5.113a
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5.114.

5.115.

27 R

N

The time for one revolution is ¢ = =27R, R Jackie goes around once in the same time but her
111

speed (v,) and the radius of her circular path (R,) are different.

vy = 27R, _ 2R, 1 RiE _Ry }RIFI.
t 27R, m RN m

IDENTIFY: Now apply ZF =ma to Jackie. She also moves in uniform circular motion.
SET UP: The free-body diagram for Jackie is sketched in Figure 5.113b.

EXECUTE:
2F . =ma,

F2 =Mdpyy

Figure 5.113b

2 2
F=mio[m| R [_RlFlj= L) Fl:(_“o mj(60.0 N) =120.0 N

2
by Fy=m2 s0 v, =\/F2R2 _ [0200N)3.60m) o
R, m 30.0 kg

EVALUATE: Both girls rotate together so have the same period 7. By Eq. (5.16), a4 is larger for Jackie
so the force on her is larger. Eq. (5.15) says R;/v; = Ry/v, s0 v, =V|(Ry/R)); this agrees with our result

in (a).

IDENTIFY: Apply F =ma to the person and to the cart.

SET UP:  The apparent weight, w,, is the same as the upward force on the person exerted by the car seat.
EXECUTE: (a) The apparent weight is the actual weight of the person minus the centripetal force needed
to keep him moving in his circular path:

2 2
Wapp = M8 —% =(70 kg) {(9.8 m/s”) —%} =434 N.

(b) The cart will lose contact with the surface when its apparent weight is zero; i.e., when the road no

2
longer has to exert any upward force on it: mg —% =0. v=4/Rg =4/(40 m) (9.8 m/sz) =19.8 m/s. The

answer doesn’t depend on the cart’s mass, because the centripetal force needed to hold it on the road is
proportional to its mass and so to its weight, which provides the centripetal force in this situation.

EVALUATE: At the speed calculated in part (b), the downward force needed for circular motion is
provided by gravity. For speeds greater than this, more downward force is needed and there is no source
for it and the cart leaves the circular path. For speeds less than this, less downward force than gravity is
needed, so the roadway must exert an upward vertical force.

IDENTIFY: Apply ZF =ma to the person. The person moves in a horizontal circle so his acceleration is
Apaq = v?/R, directed toward the center of the circle. The target variable is the coefficient of static friction
between the person and the surface of the cylinder.

27(2.5 m)

v=(0.60 rev/s)(ﬂj =(0.60 rev/s)(
1 rev 1rev

) =9.425 m/s

(a) SET UP: The problem situation is sketched in Figure 5.115a.
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Figure 5.115a

The free-body diagram for the person is sketched
in Figure 5.115b.

The person is held up against gravity by the static
friction force exerted on him by the wall.

The acceleration of the person is a4, directed in

toward the axis of rotation.

Figure 5.115b

(b) EXECUTE: To calculate the minimum g required, take f; to have its maximum value, f; = (n.
XF, =ma,
Js—mg=0
Hn=mg
XF, =ma,
n=mv?*/R
Combine these two equations to eliminate 7:
,usmvz/R =mg
_Rg _ (2.5m)(9.80 m/s?)
ST 9425 mis)?
(c) EVALUATE: No, the mass of the person divided out of the equation for . Also, the smaller g is,

0.28

the larger v must be to keep the person from sliding down. For smaller g the cylinder must rotate faster to
make »n large enough.

5.116. IDENTIFY: Apply XF =ma to the passenger. The passenger has acceleration a directed inward

rad>
toward the center of the circular path.
SET UP: The passenger’s velocity is v=27R/t =8.80 m/s. The vertical component of the seat’s force
must balance the passenger’s weight and the horizontal component must provide the centripetal force.

2
EXECUTE: (a) F,.,sin0=mg =833 N and F,,, cosO= % =188 N. Therefore
tan@ = (833 N)/(188 N)=4.43; 6 ="77.3° above the horizontal. The magnitude of the net force exerted by

the seat (note that this is not the net force on the passenger) is

Fiear :\/(833 N)2 + (188 N)2 =854 N

(b) The magnitude of the force is the same, but the horizontal component is reversed.
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2
EVALUATE: At the highest point in the motion, F,, =mg— m% =645 N. At the lowest point in the

2
motion, Fy, =mg+ m% =1021 N. The result in parts (a) and (b) lies between these extreme values.

5.117. IDENTIFY: Apply XF =md to your friend. Your friend moves in the arc of a circle as the car turns.
(a) Turn to the right. The situation is sketched in Figure 5.117a.

As viewed in an inertial frame, in the
absence of sufficient friction your friend
doesn’t make the turn completely and

E u_f you move to the right toward your friend.

Vou friend

Figure 5.117a

(b) The maximum radius of the turn is the one that makes a4 just equal to the maximum acceleration that
static friction can give to your friend, and for this situation f; has its maximum value f; = in.

SET UP: The free-body diagram for your friend, as viewed by someone standing behind the car, is
sketched in Figure 5.117b.

EXECUTE:

ZFy =ma,

n—mg=0
n=mg

mg

Figure 5.117b

L, =ma,
Js =mag
U = mv*/R
Hmg = mv?/R
_ v _ (0 m/s)? _
g (0.35)(9.80 m/s)
EVALUATE: The larger y is, the smaller the radius R must be.

0m

5.118.  IDENTIFY: Apply XF =md to the combined object of motorcycle plus rider.
SET UpP: The object has acceleration a4 = v2/r, directed toward the center of the circular path.

EXECUTE: (a) For the tires not to lose contact, there must be a downward force on the tires. Thus, the
2
. v
(downward) acceleration at the top of the sphere must exceed mg, so m? >mg, and

v>JgR =+/(9.80m/s?) (13.0 m) =11.3 ms.
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(b) The (upward) acceleration will then be 4g, so the upward normal force must be
Smg =5(110 kg)(9.80 m/s?)=5390 N.

EVALUATE: At any nonzero speed the normal force at the bottom of the path exceeds the weight of the
object.

5.119. IDENTIFY: Apply ZF =md to the circular motion of the bead. Also use Eq. (5.16) to relate Apaq to the

period of rotation 7.
SET UP: The bead and hoop are sketched in Figure 5.119a.
c:."j) The bead moves in a circle of radius R =rsin f.

! The normal force exerted on the bead by the hoop
is radially inward.

Figure 5.119a
The free-body diagram for the bead is sketched in Figure 5.119b.

EXECUTE:
ZFy =ma,
ncosf—mg=0
n=mg/cos B
XF, =ma,

nsin B =may

Figure 5.119b

Combine these two equations to eliminate 7:

[ s Jsinﬂ =M,y
cosff

sinfB ang
cosf g
Arad = Vv*/R and v=27R/T, so Apad = 47 R/T?, where T is the time for one revolution.
. 47%rsin
R=rsinf, so agy =—2’B
T

sinf 47%rsin
cos T’g
This equation is satisfied by sin #=0, so =0, or by

Use this in the above equation:

1 4r? o 72
= 72 r’ which gives cos = 2g .
cosf T’g 4r°r
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(a) 4.00 rev/s implies 7 =(1/4.00) s=0.250's
250 5)*(9. 3
Then cos = © 5028) 80 m/s”) and f=81.1°
47(0.100 m)
(b) This would mean £ =90°. But c0s90°=0, so this requires 7 — 0. So S approaches 90° as the
hoop rotates very fast, but f=90° is not possible.
(¢) 1.00 rev/s implies 7 =1.00 s
2 2 2
The cos f= 4 2g equation then says cosff = (1.00 Sz) O80 m/s7) _ 2.48, which is not possible. The only
4rzcr 47°(0.100 m)
way to have the XF =ma equations satisfied is for sin #=0. This means B =0; the bead sits at the
bottom of the hoop.
EVALUATE: [ —90° as T — 0 (hoop moves faster). The largest value T can have is given by
T2g/(47r2r) =1 so T =2x./r/g =0.635 s. This corresponds to a rotation rate of
(1/0.635) rev/s =1.58 rev/s. For a rotation rate less than 1.58 rev/s, f=0 is the only solution and the bead
sits at the bottom of the hoop. Part (c) is an example of this.
5.120. IDENTIFY: Apply XF =ma to the car. It has acceleration d,,q, directed toward the center of the circular
path.
SET UP: The analysis is the same as in Example 5.23.
2 2
12.
EXECUTE: (a) F, =m| g+ |=(1.60 ke)| 9.80 m/s> + L2016 g\,
R 0 m
v 5, (12.0 m/s)? L
(b) Fz=m| g—— |=(1.60 kg)| 9.80 m/s” —————— |=-30.4 N., where the minus sign indicates that
R 5.00 m
the track pushes down on the car. The magnitude of this force is 30.4 N.
EVALUATE: |F,|>|Fy|. |Fy|-2mg =|F|.
5.121. IDENTIFY: Use the results of Problem 5.38.

SETUP: f(x) is a minimum when d—{c =0 and C;T{ >0.

EXECUTE: (a) F = g w/(cos 8+ 1,sin8)

(b) The graph of F versus @ is given in Figure 5.121.

(c) Fis minimized at tan@ = 4 . For 1 =0.25, 6=14.0°.

EVALUATE: Small € means F'is more nearly in the direction of the motion. But 8 — 90° means F'is
directed to reduce the normal force and thereby reduce friction. The optimum value of € is somewhere in

between and depends on 1.

400

320

240
F (N)

160

80

0
0 10 20 30 40 50 60 70 50 90
f (deg)

Figure 5.121
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5.122.

5.123.

5.124.

IDENTIFY: Apply ZF =md to the block and to the wedge.

SET Up: For both parts, take the x-direction to be horizontal and positive to the right, and the y-direction
to be vertical and positive upward. The normal force between the block and the wedge is n; the normal
force between the wedge and the horizontal surface will not enter, as the wedge is presumed to have zero
vertical acceleration. The horizontal acceleration of the wedge is 4, and the components of acceleration of
the block are a, and a,,

EXECUTE: (a) The equations of motion are then MA =—-nsin¢, ma, =nsino and ma, =ncoso —mg.

y
Note that the normal force gives the wedge a negative acceleration; the wedge is expected to move to the

left. These are three equations in four unknowns, 4, a,, a, and #n. Solution is possible with the imposition
of the relation between 4, a, and a - An observer on the wedge is not in an inertial frame, and should not

apply Newton’s laws, but the kinematic relation between the components of acceleration are not so
restricted. To such an observer, the vertical acceleration of the block is a,, but the horizontal acceleration

of the block is a, — A. To this observer, the block descends at an angle ¢, so the relation needed is

a
2 —=—tan &. At this point, algebra is unavoidable. A possible approach is to eliminate @, by noting

a, —

and then eliminating #. The results are:

that a, =—— 4, using this in the kinematic constraint to eliminate a,,
m

A= —sm
(M +m) tanor + (M / tan &)

- gM
(M +m) tanor + (M / tan &)

ay

_ —-g(M +m) tancr
Y (M+m) tana + (M / tan @)

(b) When M >>m, A — 0, as expected (the large block won’t move). Also,
g _ tan @

= 5 = gsinacosa which is the acceleration of the block ( gsine in this
tan o + (1/tan @) tan“a +1

case), with the factor of coso giving the horizontal component. Similarly, a,, ——g sin” v,

+m

. . . . . M
(c) The trajectory is a straight line with slope —[ ] tana.

EVALUATE: If m>>M, our general results give a, =0 and a, =—g. The massive block accelerates

straight downward, as if it were in free fall.
IDENTIFY: Apply XF =ma to the block and to the wedge.

SETUP: From Problem 5.122, ma, =nsina and ma,, =ncoso —mg for the block. a, =0 gives

y
a,=gtana.

EXECUTE: If the block is not to move vertically, both the block and the wedge have this horizontal
acceleration and the applied force must be F' = (M +m)a = (M +m)gtanc.

EVALUATE: F —0 as ¢ =0 and F = o0 as a— 90°.

IDENTIFY: Apply XF =ma to the ball. At the terminal speed, a = 0.

SET UP: For convenience, take the positive direction to be down, so that for the baseball released from
rest, the acceleration and velocity will be positive, and the speed of the baseball is the same as its positive
component of velocity. Then the resisting force, directed against the velocity, is upward and hence
negative.

EXECUTE: (a) The free-body diagram for the falling ball is sketched in Figure 5.124.
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(b) Newton’s second law is then ma =mg — Dv?. Initially, when v =0, the acceleration is g, and the speed

increases. As the speed increases, the resistive force increases and hence the acceleration decreases. This
continues as the speed approaches the terminal speed.

(c) At terminal velocity, a=0, so v, =, f% in agreement with Eq. (5.13).

. . . d . .
(d) The equation of motion may be rewritten as ?v = %(vt2 —? ). This is a separable equation and may be
t \
dv g 1 v gt
expressed as I > =—2J.dt or — arctanh| — |==5. v=v, tanh(gt/v,).
vi—=v vy Vi W) v
ef—e*
EVALUATE: tanhx= - At t =0, tanh(gt/v,) > 0andv—0. At
e +e

t = oo, tanh(gt/v,) > 1and v=v,.

Figure 5.24

5.125. IDENTIFY: Apply EF =mi to each of the three masses and to the pulley B.
SET UP: Take all accelerations to be positive downward. The equations of motion are straightforward, but
the kinematic relations between the accelerations, and the resultant algebra, are not immediately obvious. If
the acceleration of pulley B is ag, then ap =—a3, and ajp is the average of the accelerations of masses 1

and 2, or @y +a, =2ap =—2a;.

EXECUTE: (a) There can be no net force on the massless pulley B, so T~ = 27,. The five equations to be
solved are then myg — T, =ma,, myg—T,=mya,, myg—T-=mza;, a;+a,+2a;=0 and

2T, —T- =0. These are five equations in five unknowns, and may be solved by standard means.

The accelerations a; and a, may be eliminated by using 2a; = —(q; +a,) =—(2g —T,((1/m;) + (1/m5))).
The tension 7, may be eliminated by using 7, = (1/2)T = (1/2)m;3(g — az).

.. . . —4mym, + mymy + mym
Combining and solving for a; gives a; =g 12 23 13

Amymy + mymy + nymy
(b) The acceleration of the pulley B has the same magnitude as a3 and is in the opposite direction.

T T, m
©a=g-A=g-—E=g-—

(g —a3). Substituting the above expression for a3 gives

o . . . . 4 - +
(d) A similar analysis (or, interchanging the labels 1 and 2) gives a, = g mymy = 3myms + iy .

(e), (f) Once the accelerations are known, the tensions may be found by substitution into the appropriate

T~ =

equation of motion, giving 7, =g Ac=8 .

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



Applying Newton’s Laws 5-65

5.126.

5.127.

() If m; =my =m and my =2m, all of the accelerations are zero, T =2mg and 7, =mg. All masses
and pulleys are in equilibrium, and the tensions are equal to the weights they support, which is what is
expected.

EVALUATE: It is useful to consider special cases. For example, when my = m, >>mj; our general result
gives ay =a, =+gand a; =g.

IDENTIFY: Apply ZF =ma to each block. The tension in the string is the same at both ends. If 7' <w for
a block, that block remains at rest.

SET Up: In all cases, the tension in the string will be half of F.

EXECUTE: (a) F/2=62 N, which is insufficient to raise either block; a; =a, =0.

(b) F/2=147 N. The larger block (of weight 196 N) will not move, so @, =0, but the smaller block, of

weight 98 N, has a net upward force of 49 N applied to it, and so will accelerate upward with

ay = BN 4 omis?.

10.0 kg
(¢) F/2=212 N, so the net upward force on block 4 is 16 N and that on block B is 114 N, so
a = 6N _ ) 8m/s? and a = AN ) 4,

20.0 kg 10

EVALUATE: The two blocks need not have accelerations with the same magnitudes.
IDENTIFY: Apply XF =ma to the ball at each position.

SET UP: When the ball is at rest, @ =0. When the ball is swinging in an arc it has acceleration component
2
v . .
Argg = R directed inward.

EXECUTE: Before the horizontal string is cut, the ball is in equilibrium, and the vertical component of the
tension force must balance the weight, so T cos f=w or T, =w/cos 3. At point B, the ball is not in

equilibrium; its speed is instantaneously 0, so there is no radial acceleration, and the tension force must
balance the radial component of the weight, so Tz =wcos # and the ratio (T3/T,) = cos® 3.
EVALUATE: At point B the net force on the ball is not zero; the ball has a tangential acceleration.
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